Real-time Implementation of Digital Coherent Detection

R. Noé, U. Rückert, S. Hoffmann, R. Peveling, T. Pfau, M. El-Darawy, A. Al-Bermani

UNIVERSITÄT PADERBORN Die Universität der Informationsgesellschaft

University of Paderborn, Electrical Engineering Optical Communications and High-Frequency Engineering

Outline

- Introduction
- Real-time constraints for coherent receiver algorithms
- Angle-based phase estimation for QPSK
- Combination with polarization multiplex
- Integrated DSPU for a PDM-QPSK receiver
- Real-time measurement results
- Conclusion and outlook

Coherent QPSK transmission

- QPSK transports 2 bits per transmitted optical symbol compared to OOK
- Lower symbol rate enhances chromatic and polarization mode dispersion tolerance (10 Gbaud Polarization multiplex QPSK = 40 Gbit/s)
- Feedforward receiver concepts can easily be implemented using digital signal processing compared to classical OPLL approach.
- Off-the-shelf, low-cost, small-sized DFB lasers suffice in spite of phase noise.

Coherent optical receiver structure

Compensation of intermediate frequency and phase noise, polarization crosstalk, PMD, CD, (nonlinear effects,) ... using digital signal processing.

Internal structure of the DSPU

Real-time constraints for receiver DSP algorithms

- Demultiplexing and parallelization allows to use standard logic elements with relaxed clock speed requirements.
- Delay robustness of control algorithms for all the cases when feedback loops cannot be avoided at all.
- Efficient hardware is required to enable a high degree of parallelization with moderate area and power consumption.

Feasibility of parallel processing

ADC sampling frequency: 10 GHz to 56 GHz

Demultiplexing to 16...128 parallel channels

DSPU clock frequency: 100 MHz to 800 MHz

Comparison of FIR and IIR filters

Real-time constraint: Hardware efficiency

Computationally complex algorithms increase the required chip area, power consumption and cost.

Ways to increase hardware efficiency:

• Signal transformations, example: FFT/ IFFT

Convolution FFT/IF

Multiplication

- Use of look-up tables
- Optimization of the required precision

Real-time constraint: Tolerance against feedback delays

- Digital signal processing for coherent optical receivers requires massive
- parallel processing,
- pipelining.

Decision-directed carrier recovery

Feedforward carrier recovery

Viterbi & Viterbi Algorithm^[1]:

[1] R. Noé, IEEE J. Lightwave Technology, Vol. 23, No. 2, Feb. 2005, pp. 802-808
[2] S. Hoffmann et al., IEEE Photon. Technol. Lett., Vol. 21, No. 3, Feb. 2009, pp. 137-139

Barycenter algorithm

Digital synchronous QPSK receiver scheme

Differential encoding of data quadrant number n_d in TX

Functionally identical with analog scheme

UNIVERSITÄT PADERBORN

 $\underline{X} \sim \underline{E}_{TX} \underline{E}_{LO}^*$

Detection and correction of quadrant phase jump

- Data bits $d_1, d_2 \Leftrightarrow$ quadrant number n_d
- Differential encoding of quadrant number in transmitter: $n_c(i) = (n_d(i) + n_c(i-1)) \mod 4$
- Differential decoding of quadrant number in receiver, taking phase jumps into account !

<i>d</i> ₁ , Re <u><i>c</i></u> , <i>o</i> ₁	d_2 , Im \underline{c} , o_2	n_d, n_c, n_o
1	1	0
-1	1	1
-1	-1	2
1	-1	3

Electronic polarization control

- $\langle \mathbf{Q} \rangle$ be a perfect estimate of MJ $\mathbf{M} := \langle \mathbf{Q} \rangle^{-1} \mathbf{M} = (\mathbf{MJ})^{-1} \mathbf{M} = \mathbf{J}^{-1}$ • $\langle \mathbf{Q} \rangle \rightarrow \mathbf{1} \Rightarrow \langle \mathbf{Q} \rangle^{-1} = (\mathbf{1} - (\mathbf{1} - \langle \mathbf{Q} \rangle))^{-1} \approx \mathbf{1} + (\mathbf{1} - \langle \mathbf{Q} \rangle)$
- A be a data vector $\Rightarrow \langle N \rangle = \langle (NA)A^+ \rangle$

$$\mathbf{Q}(i) = (1/2) \cdot \mathbf{X}(i-N) \cdot e^{-j\varphi(i)} \cdot \mathbf{r}(i)^{+}$$

 $\mathbf{M} := (\mathbf{1} + g(\mathbf{1} - \mathbf{Q}))\mathbf{M}$

- $g \ge 10^{-3}$ results in well sufficient accuracy of matrix elements and control time constant on the order of $\le 10^3$ cycles.
- At 10 Gbaud control time constants down to ≤ 100 ns are possible.

Decision-directed polarization control

R. Noé, IEEE Photon. Technol. Lett., Vol. 17, No. 4, April 2005, pp. 887-889

DSP components for real-time synchronous QPSK transmission

Single-chip system

- Highest integration
 - \rightarrow small footprint
- Simple interfacing
- Ommon technology for ADCs and DSPU
 - \rightarrow suboptimal performance

- Optimum performance
- Possibility to use commercial ADCs
- 8 Complex interface
- 8 Increased footprint

Chip Specifications

SiGe ADC		CMOS ASIC			
Technology	0.25µm SiGe	Standard Cell Design		Full Custom Design	
Resolution	5 bit	Gates	306,963	Devices	11,838
Number of transistors	3378	Std. cells	121,576	Max. frequency	10 GHz
Chip size	5.4 mm ²	Max. frequency	625 MHz	Supply voltages	1.8 V,1.2V
Supply voltage	-4 V, 1.8 V	Supply voltage	1.2 V	Power consumpt	ion 1.5 W
Measured power consumpt	ion 2.7 W	Power consumption 0.5 W			
Measured full scale range	410 mV				
Measured DNL	< ± 0.45 LSB				
Measured INL	< ± 0.35 LSB	Combined Standard Cell and Full Custom Designs			
Sampling frequency	> 10 GHz	Power			2 W
Measured input bandwidth	> 5GHz	Technology		130 nm bulk	(CMOS
		Size		15.73	37 mm²
		Pads	000000000000000000000000000000000000000		146
		Supply voltages		1.2 \	V, 1.8 V
			0000		

5-bit 10-GS/s analog-to-digital converter

technology	0.25 µm SiGe:C BiCMOS		
resolution	5 bit		
number of transistors	3378		
chip size	5.4 mm ²		
supply voltages	-4 V +1.8 V		
measured power consumption	2.7 W		
measured full scale range (V _{FSR})	410 mV		
measured DNL	< ± 0.45 LSB		
measured INL	< ± 0.35 LSB		
sampling frequency	> 10 GHz		
measured input bandwidth	> 5 GHz (10 GSymbol/s)		
measured SNR	up to 30 dB		

UNIVERSITÄT PADERBORN

20

O. Adamczyk et al., Electron. Lett., Vol. 44, No. 15, July 2008, pp. 895-896

Digital signal processing unit

	Full-custom	Standard-cell	ASIC
Complexity [transistors]	11,838	1,216,000	1,227,838
Area [mm ²]	5.952	5.34	15.737
Frequency [MHz]	5,000 half-rate	625	5,000 half-rate
Power Supply [V]	1.8	1.2	1.8, 1.2

Digital signal processing unit

	Full-custom	Standard-cell	ASIC
Complexity [transistors]	11,838	1,216,000	1,227,838
Area [mm ²]	5.952	5.34	15.737
Frequency [MHz]	5,000 half-rate	625	5,000 half-rate
Power Supply [V]	1.8	1.2	1.8, 1.2

Components

5-bit 10 Gsample/s flash A/D converter chip Size: 2.1 mm×2.55 mm 0.25µm SiGe

CMOS ASIC 4.1 mm×4.1 mm 130 nm bulk CMOS

Co-packaged module Ceramic substrate 8.5 cm×6.0 cm

10 Gb/s polarization-multiplexed QPSK transmission

 no x-talk: SOP is manually adjusted, that the polarization cross-talk is minimized.

 \rightarrow Switching noise is minimized.

 x-talk: SOP is manually adjusted, that the polarization cross-talk is maximized.

 \rightarrow Switching noise is maximized.

 50 rad/s: SOP is scrambled with 50 rad/s on the Poincaré sphere.
 → Switching noise is the average value of best and worst case.

Experimental transmission setup

Measurement results – fast polarization changes & receiver sensitivity penalty

Measurement results – polarization-dependent loss

28

UNIVERSITÄT PADERBORN

Conclusion

General real-time requirements for the DSPU:

Parallelization Delay tolerance Hardware Efficiency

- Angle-based phase recovery concept (barycenter): simple, linewidth-tolerant
- Polarization diversity with automatic polarization demultiplex
- Realtime coherent receiver implementation: SiGe ADC, CMOS DSPU
- Test results: 10 Gb/s, 40 krad/s

Acknowledgement

European Commission FP6 contract 004631 http://ont.upb.de/synQPSK

synQPSK Univ. Paderborn, Germany CeLight Israel Photline, France IPAG, Germany Univ. Duisburg-Essen, Germany

Thank you for your attention!