The future of Submarine Systems
Where Do Upgrades Fit?

Tony Frisch and Sumudu Edirisinghe, Xtera Communications
Contents

Focuses on Third Party upgrades of Long-span Repeatered submarine systems

• Background
• Upgrade Issues for legacy systems
• Constraints for increasing the data rates
• Potential advances for future cable systems
• Potential upgrade opportunities on new cables
• Conclusions
Where do Third Party Upgrades fit?

- **What?** Modification of the system to add capacity/functionality
- **When?** After the initial construction of the system
- **Why?** Opportunism
 - Better features from the competitor
 - To create competitive pressure
- **Why not?** Submarine-specific requirements/features
 - E.g. terrestrial suppliers generally cannot monitor submerged repeaters
- **Who?** Anyone other than the original supplier
 - Providing they can offer the correct solution – so far mainly submarine specialists

... Recently several non-specialists e.g. Nortel, Infinera, Huawei are showing interest in this market
Why Third Party Upgrades work

• Surely the initial supplier is best positioned?
 – Knowledge
 – Footprint
 – Simple installation
 – Upgrade needs to be coupled
 Unless it's on a dark fibre

• Exceptions are:
 • Initial supplier may be out of business
 • Existing equipment may no longer be supplied
 • Upgrade may be of low interest to initial manufacturer
 • Upgrade supplier may offer more
 – Better capacity
 – Better features
 – Better price / delivery
What about System Warranty?

- Usually expires after 5 years, so may not apply
- Risk is low because:
 - Submerged plant is very reliable
 - Terminal equipment is electrically isolated from the power feed
 - Terminal equipment produces relatively low power at the repeater

- Bad business to seek to void warranty without a good reason ...
Transatlantic Capacity Growth

Two targets:
- Upgrade existing systems
- Upgrade new systems

Source: Telegeography
Growth – the major driver

- Total capacity increased ~12x
- Capacity per fibre increased ~3x
Anatomy of a submarine system

- Cable
- Powering
- Monitoring

- Amplifier: larger bandwidth, more output power
- Fibre: larger core, different dispersion maps
- Terminal: higher line-rates, improved FEC, adjustable dispersion compensation, DPSK...
Initial Design Constraints

- Wet parts are very expensive to develop
 - Reluctance to change the design without a compelling reason
- Wet parts are very expensive to replace
 - Need to be reliable
 - Reluctance to replace them as part of an upgrade
 - Fault location a critical need
 - Simple for cable breaks using DC fault location
 - More difficult for amplifier faults needs a specialist solution

How can one detect which amplifier is faulty?
Upgrade Constraints

- Wet parts are very expensive to access
 - Changing repeaters: VERY expensive
 - Adding equalisers: Expensive, but more realistic? yet to be done ...
 - Disrupts traffic

- Moving the complete system: Quite popular
 - Cheaper than buying a new system

- Most cost-effective is to replace terminal equipment
 - Low / no disruption to traffic
 - May be able to retain existing terminal equipment

- Station by-pass: Increasing popularity
 - Provides more flexibility to carriers

- Needs a good understanding of the line characteristics
Line Characteristics

- **Amplifier**
 - Bandwidth / Gain shape
 - Power out
 - Noise factor
 - Supervisory type

- **Fibre map**
 - Attenuation
 - Dispersion
 - Dispersion slope
 - Lengths

- **Existing traffic**
 - Wavelengths
 - Power levels
 - Rate / Format
 - Performance
Line Shaping

- **Equalisers**
 - Passive
 - Active (adjustable)

- **Branching Units**
 - Fibre-splitting
 - Wavelength Selective
 - Coupler based

- Trend is towards simplicity?

- Need to understand
 - Wavelength Selectivity
 - Control
 - Monitoring
• Different solutions for handling chromatic dispersion

• Longer spans make non-linear effects more significant
• Generally need different solutions for submarine and terrestrial
Dispersion as a barrier to competition

- Long spans make dispersion an issue
- Example of residual dispersion
 - $Cd' = 0.1 \text{ ps/km/nm}^2$
 - Length $= 6000 \text{ km}$
 - WL offset $= 5 \text{ nm}$

 Typical values

 $$= 3000 \text{ ps/nm}$$

- Different for different wavelengths / bands
- **Significantly more than for a typical terrestrial system**
Technical Differences

- 40 Gb/s, and higher, solution in all cases, using Dual Polarisations of lower rate signals

Terrestrial

- **Long Haul**
 - Noise
 - DPSK and Multilevel (DQPSK)

Submarine

- **Short Haul**
 - Noise + Low Dispersion
 - DPSK and Multilevel (DQPSK)
 - TDC or EDC

- **Long Haul**
 - PSK / DPSK + TDC/ EDC
 - Coherent detection (?)
 - Soft decision FEC
 - Non-linear Effects
 - Noise + Low Dispersion
40Gb/s Performance on legacy submarine systems

<table>
<thead>
<tr>
<th>Bitrate/Modulation</th>
<th>Channel spacing/ GHz</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.8 Gb/s DPSK, DD</td>
<td>100</td>
<td>Poor</td>
</tr>
<tr>
<td>42.8 Gb/s DQPSK, DD</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>42.8 Gb/s QPSK HD</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>42.8 Gb/s POLMUX DPSK DD</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>42.8 Gb/s POLMUX DPSK T/2 DD</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>21.4 Gb/s DPSK, DD</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>42.8 G POLMUX DPSK T/2 HD</td>
<td>50</td>
<td>Good</td>
</tr>
</tbody>
</table>

Over 6750km Submarine link with LEAF & LS fibre

DD = Direct Detection, HD = Homodyne Detection
Legacy verses future systems

• Upgrading long span legacy systems over 4000km to higher data rates seems challenging
 – Moving to 40Gb/s over trans-Atlantic distances will require 2 x 20Gb/s or 4 x 10Gb/s
 – Coherent detection may not work well with DSF and NZ-DSF links due to nonlinear effects

• However, for new builds there is increasing pressure to move to 40Gb/s and 100Gb/s data rates
 – Needs cables designed for large bandwidths and minimal non-linear effects
 – Modulation and detection schemes capable of delivering 100Gb/s would dictate the fibre types
 – Coherent detection would offer more functionality
 • Mitigation of propagation effects using DSP
 • Better coding gains through soft decision
More fibre pairs, more bandwidth

- Higher Bandwidth?
- C + L band EDFA
 - More complex
 - More pumps
 - More power needed

- Raman Amplifier
 - Complex control
 - More pumps
 - More power needed

- Is there a benefit compared with 2 fibres?
 - Economic?
 - Reliability?

- Power / reliability could be the key limit to capacity
• +D/–D reduces Cd and non-linear effects; expensive and makes repairs quite complex?
• All PSCF an even better solution?

Today (+D/–D) Future? (all PSCF)

Large Area Core
All PSCF Fibre

- Long spans make dispersion very large
 - $C_d \sim 20$ ps/km/nm
 - Length 6,000 km
 - Dispersion 120,000 ps/nm
- Only practical with Electronic Dispersion Compensation (EDC)

- Most suppliers currently selling direct detection DPSK
 - High-speed ADC and DSP not trivial developments
 - Some questions regarding coherent benefit on long spans
FEC limits

- Simple binary codes are close to reaching the theoretical limits
- Soft-decision gives theoretical improvement of up to 3 dB
- Requires high-speed ADCs – more complex coding/decoding

Using 6 bit soft-decision decoding

Net coding gain (dB)

Overhead (%)

Hard coding

Using 6 bit soft-decision decoding
Higher level formats

- Needed to avoid the need for higher line-rates

- More levels = more power
- More levels + more power = problems with non-linear distortion

- More levels = more processing = more complexity
Will upgrades be viable in the future?

- If future systems evolve towards uncompensated PSCF systems then,
 - Coherent detection + DSP will be the most viable technique
 - The upgrade market will become very competitive
 - System design should be simpler

- The upgrade business will thrive if upgrade vendors offer
 - Compatible equipment providing 40Gb/s and 100Gb/s at competitive prices
 - With extra functionality and superior service

- Carriers interested in third party upgrades
 - To maintain a competitive environment
 - To stimulate innovative advances
 - To cover the possibility that a supplier goes out of business or a product becomes obsolete
Summary

• Moving to 40/100 Gbaud line rates on long submarine links proves to be challenging
• Higher capacity per fibre pair will use binary/quaternary formats rather than 40/100 Gbaud line-rates Also likely to use polarisation multiplexing
• Choice of format / line-rate depends on target system
• Single, low-loss, large area, high-dispersion fibre map appears attractive for future deployments
• ADC and DSP technology is likely to be a key enabler
 – Expensive development
 – Will not happen quickly

• A lot of potential changes, opportunities and challenges for upgrade suppliers as the target system evolves
Acknowledgements

• Carl Weinert, Lutz Molle, Ronald Freund from HHI, Berlin, Germany

• Joerg Schwartz, Xtera Communications, UK
Thank you for listening

Any Questions?