Google

 100GbE in Datacenter

 100GbE in Datacenter Interconnects: When, Interconnects: When, Where?

 Where?}Bikash Koley
Network Architecture, Google

Sep 2009

Datacenter Interconnects

- Large number of identical compute systems
- Interconnected by a large number of identical switching gears
- Can be within single physical boundary or can span several physical boundaries
- Interconnect length varies between few meters to tens of kms
- Current best practice: rack switches with oversubscribed uplinks

Google

- INTRA-DATACENTER CONNECTIONS
- INTER-DATACENTER CONNECTIONS

Fiber-rich, Very large BW demand

Datacenter Interconnect Fabrics

- High performance computing/ super-computing architectures have often used various complex multistage fabric architectures such as Clos Fabric, Fat Tree or Torus [1, 2, 3, 4, 5]
- For this theoretical study, we picked the Fat Tree architecture described in [2, 3], and analyzed the impact of choice of interconnect speed and technology on overall interconnect cost
- As described in [2,3], Fat-tree fabrics are built with identical N-port switching elements
- Such a switch fabric architecture delivers a constant bisectional bandwidth (CBB)

Interconnect at What Port Speed?

- A switching node has a fixed switching capacity (i.e. CMOS gatecount) within the same space and power envelope
- Per node switching capacity can be presented at different port-speed:
- i.e. a 400Gbps node can be 40X10Gbps or 10X40Gbps or 4X100Gbps
- Lower per-port speed allows building a much larger size maximal constant bisectional bandwidth fabric
- There are of course trade-offs with the

3-stage Fat-tree Fabric Capacity
 number of fiber-connections needed to build the interconnect

- Higher port-speed may allow better utilization of the fabric capacity

Fabric Size vs Port Speed

Constant switching BW/node of 1Tbps and constant fabric cross-section BW of 10Tbps Assumed

- Higher per port bandwidth reduces the number of available ports in a node with constant switching bandwidth
-In order to support same crosssectional BW
>more stages are needed in the fabric
$>$ More fabric nodes are needed

Power vs Port Speed

- Three power consumption curves for interface optical modules:
- Bleeding Edge: 20x power for $10 x$ speed; e.g. if 10 G is $1 \mathrm{~W} /$ port, 100 G is $20 \mathrm{~W} /$ port
- Power Parity: Power parity on per Gbps basis; e.g. if 10G is 1W/port, 100G is 10W/port
- Mature: 4x power for $10 x$ speed; e.g. if $10 G$ is $1 W /$ port, 100 G is $4 W /$ port
- Lower port speed provides lower power consumption
- For power consumption parity, power per optical module needs to follow the "mature" curve

Cost vs Port Speed

- Three cost curves for optical interface modules:
- Bleeding Edge: 20x cost for 10x speed
- Cost Parity: Cost parity on per Gbps basis
- Mature: 4x cost for 10x speed;
- Fiber cost is assumed to be constant per port (10\% of 10G port cost)
- For fabric cost parity, cost of optical modules need to increase by $<4 x$ for $10 x$ increase in interface speed

Google

- INTRA-DATACENTER CONNECTIONS
- INTER-DATACENTER CONNECTIONS

Limited Fiber Availability, 2km+reach

Beyond 100G: What data rate?

- 400Gbps? 1Tbps? Something "in-between"? How about all of the above?
-Current optical PMD specs are designed for absolute worst-case penalties
-Significant capacity is untapped within the statistical variation of various penalties

Back-to-back budget

Where is the Untapped Capacity?

- Unused Link Margin \equiv Untapped SNR \equiv Untapped Capacity
- In ideal world, 3dB of link margin will allow link capacity to be doubled
- Need the ability to use additional capacity (speed up the link) when available (temporal or statistical) and scale-back to the base-line capacity (40G/100G?) when not

Rate Adaptive 100G+ Ethernet?

- There are existing standards within the IEEE802.3 family:
- IEEE 802.3ah 10PASS-TS: based on MCM-VDSL standard
- IEEE 802.3ah 2BASE-TL: based on SHDSL standard
- Needed when channels are close to physics-limit : We are getting there with 100Gbps+ Ethernet
- Shorter links \equiv Higher capacity (matches perfectly with datacenter bandwidth demand distribution, see slide \# 3)

- How to get there?
- High-order modulation
- Multi-carrierModulation/OFDM
- Ultra-dense WDM
- Combination of all the above

Is There a Business Case?

- An example link-length distribution between datacenters is shown
- Can be supported by a 40 km capable PMD
- Various rate-adaptive $100 \mathrm{GbE}+$ options are considered
- Base rate is 100 Gbps

Max adaptive bit-rate varies from 100G to 500G

- Aggregate capacity for $\mathbf{1 0 0 0}$ such links is computed

Q\&A

Google

