

100 Gb/s – How, where, when?

Long-haul 100G transmission: the system vendor challenge

Dirk van den Borne

September 20, 2009

Scaling to 100-Gb/s...

Scaling long-haul telecommunication networks to a 100-Gb/s data rate can only be successful if:

- The 100-Gb/s transmission format is compatible with already deployed transmission links: Allow for a seamless upgrade to 100-Gb/s.
- The reach of 100-Gb/s is comparable to today's reach at a 40-Gb/s data rate for a newly deployed transmission link: Ensure compatibility with existing network
 topologies.
- The \$ / bit / km is lower for 100-Gb/s transmission compared to today's 40-Gb/s transmission: A cost-effective solution at the network level.

How do we enable cost-effective 100-Gb/s for volume deployment in the core network?

CP-QPSK modulation and digital signal processing

Coherent-detected Polarization-multiplexed Quadrature Phase Shift Keying

The three C's

- Capacity: support the need for traffic growth over the next decade.
 - Supports a 50-GHz spaced wavelength grid to allow 8+ Tb/s on a single fiber.
 - Supports highly meshed networks with numerous cascaded ROADM.
- Complexity: simplify link design and system deployment.
 - Reduces sensitivity to transmission impairments (optical filtering, CD, PMD).
 - Eliminates the need for optical dispersion-management.
 - Reduces the requirements for fiber measurements upon system planning and turn-up.
- Cost reduction: lower CAPEX and OPEX on the network level
 - Eliminates regeneration points through an increase in transmission distance.
 - Increase automation through colorless and directionless add-drop architectures.
 - Reduces footprint and lowers power consumption (Watt / bit / km).

The road to cost-effective 100G

- CP-QPSK modulation and digital signal processing shift system complexity from the transmission link towards the transponders.
 - To make 100G more cost-effective we primarily need to focus on transponder costs.
- Optical and electrical integration are needed to drive down transponder cost.
 - Single-chip digital signal processing integrated with high-speed analog-to-digital converters.
 - Integrated PM-QPSK modulators.
 - Receiver front-ends, with integrated 90° hybrids, beam splitters and photodiode arrays.
 - Monolithic integration of active and passive components (both Tx and Rx).
 - Low-cost pluggable client transponders.

But only volume and standardization will enable the real cost-effective 100G...

The 100G ecosphere

The industry needs to build a 100G ecosphere that enables standardization, and drives down development cost and risk.

Conclusion

- The road to 100G is not only a jump in capacity... it is as well a jump in system complexity.
- The right mix of technologies can enable cost-effective 100G transmission.
 - High performance transmission systems (low noise figure EDFAs, Raman) are needed to maximize reach, and thereby minimize regeneration points.
 - Highly automated transmission systems (colorless / directionless) can increase the effectiveness of 100G transponders in highly meshed networks.
 - A strong focus on optical and electrical integration is needed drive down cost and complexity.
- Even after initial 100G deployment, the road towards cost-effectiveness will still provides both challenges and opportunities to everybody.

THANK YOU!

