
100G – A carrier's view as an infrastructure

2009.9.20

Yutaka Miyamoto, and Masahito Tomizawa NTT Network Innovation Labs.

FTTH update in NTT and Japan

Source: "ITU Internet Reports 2005: The Internet of Things" (Nov. 2005)

Total Fiber length~3.7 x 10⁹ m Coverage ~ 90% (@2009 forecast) Nearly 50% of broadband users in Japan enjoy services over FTTH infrastructure.

Necessity of higher-speed on a wave

- New services
 - Router-to-router connection
 - 40GPOS/40GE/100GE bulk service by BIG routers/switches
 - Driver of the initial installation of 40G, 100G transport

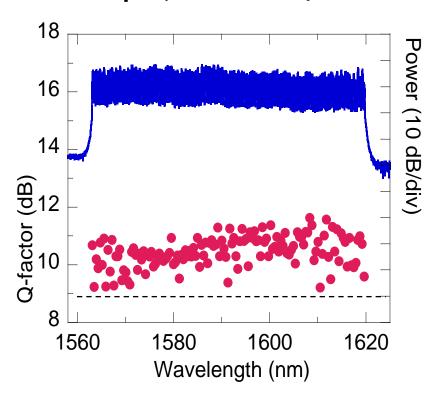
CapEX

- Huge data in smaller number of fibers
 - Ramping up of the volume 10GEthernet services.
 - Avoiding new fiber deployment
 - Spectral efficiency is a key
 - Lower cost/bit/s

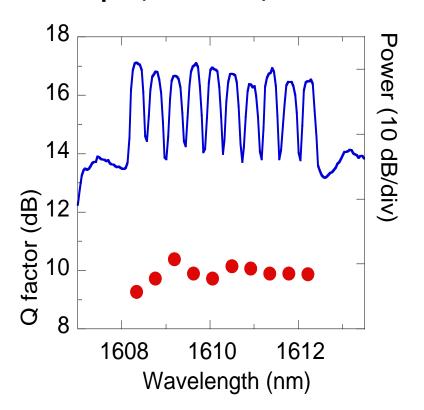
OpEX

- For easier operation
 - Decreasing the frequency of line-card insertion
 - Relaxing the management of line-card logistics

Carriers are always interested in the highest-speed on a wavelength.


Requirements

- Some carriers ask vendors to release 100G transport
 - 2010 Q2
- 100G transport is very challenging in 10G based design links
 - 50GHz spacing
 - 1000-2000km
 - Coherent transmission assisted by DSP will be required.
- Very high-speed optical transmission market is small.
 - We cannot change the device roadmap of semiconductors.
 - When is the timing for 100G transport?
 - To have an appropriate format/device selection
 - To get a sensible investment



Potential performances of 100G Digital Coherent Technologies

13.5 Tbps (135 x 111G) -7209km

1 Tbps (10 x111G) -10093 km

50 GHz spacing WDM transport over 1000 km is feasible using digital coherent system.

100G level ADC in CMOS

43G ADC in CMOS

112G ADC in CMOS (43 x 2.5)

2006 UPDATE TECHNOLOGY REQUIREMENTS TABLES/

Table 46a RF and Analog Mixed-Signal CMOS/Technology Requirements—Near-term Years

9		_	/	O/	1				
Year of Production	2005	2006 ►	2007	2008	2009	2010	2011	2012	2013
DRAM ½ Pitch (nm) (contacted)	80	70	65	57	50	45	40	35	32
Performance RF/Analog [1]									
Supply voltage (V) [2]	1.2	1.2	1.2	1.2	1.1	1.1	1.1	1	1
T _{ox} (nm) [2]	2.2	2.1	2.0	1.9	1.6	1.5	1.4	1.4	1.3
Gate Length (nm) [2]	75	65	53	45	37	32	28	25	22
g _m /g _{ds} at 5·L _{min-digital} [3]	47	40	32	30	30	30	30	30	30
1/f-noise (μV ² ·μm ² /Hz) [4]	190	180	160	140	100	90	80	80	70
σ V _{th} matching (mV·μm) [5]	6	6	6	6	5	5	5	5	5
I _{ds} (μΑ/μm) [6]	19	15	13	11	9	8	7	6	6
Peak F _t (GHz) [7]	120	140	170	200	240	280	320	360	400
Peak F _{max} (GHz) [8]	200	220	270	310	370	420	480	530	590
Revised Peak Fmax (GHz) in 2008 revision			200	240	290	340	390	440	510

Analogue & RF in CMOS; 1.1~1.2 x speed enhancement by every year. Suppose that 43G-level (10Gbaud) ADC in CMOS was operated in 2006 in volume commercial systems.

The same level 112G-level ADC would be operable in 2012 in volume commercial systems.

Timing for 100G transport

- When is the timing for 100G transport?
 - Following the semiconductor roadmap.
- The enabler and bottleneck for early adoption
 - ADC in CMOS (with DSP) by 1-chip
 - Supposing 43G-ADC in 2006, 112G-ADC will be operated in 2012 in commercial (volume) phase.
 - We have to take a careful attention whether the linear extension is applicable or not.
 - Semiconductor crisis by economic downturn
 - Speed enhancement seems slow-down from 2006-roadmap to 2008roadmap.
 - Standby power reduction, design tool-kits in 45-35nm CMOS process.
- An interim step for 100GE/OTN would be necessary for early adopters.
 - About 2010
 - Not for volume business, but for some demonstration
 - Challenging technologies (sometimes tricky) may be adopted in the early stage.

Interim steps candidates

- About 2010,
- 1) Use of existing infrastructure
 - 100GE can be mapped into 2 x 43G or 2 x 56G
 - Subcarriers, optical PolDMX, WDM,...
- 2) ADC and DSP separation for serial 112G
 - ADC in SiGe-BiCMOS technologies, DSP in CMOS
 - Special type of interconnection should be developed.
 - Power,..
- 3) Innovation on the current CMOS-ADC for serial 112G
 - Special type of sampling technology is required.