Microwave Photonic Technologies for Flexible Satellite Telecom Payloads

M. Sotom, B. Bénazet, A. Le Kernec, M. Maignan
Contents

- Introduction
- Telecom satellites and payloads
- Optical handling of microwave signals
 - Optical distribution of local oscillators
 - Optical frequency conversion
- Examples of Opto-microwave telecom payload
 - Flexible payload
 - Photonic antenna subsystems
- Conclusion
What is a space system?

- **A Space System is composed of**
 - a space segment: one or several satellites
 - a launcher
 - a ground segment: Mission and Satellite Control Center(s)

- **The Satellite is composed of**
 - a Payload which supports the functionalities of the mission
 - a Platform which supports and operates the Payload
 (powering, pointing, thermal management, telemetry / telecommand …)

- **The Telecom payload is composed of**
 - antenna sub-system
 - repeater sub-system

What are the main challenges?

- Cost
- Reliability: 15 years in orbit (130,000 hours)
- Mass
- Harsh space environment: thermal, vacuum, radiation, vibration & shock (launch)
Conventional telecom missions

- Global (or a few) coverage
- Fixed routing from uplink to downlink accesses
- Transparent RF payloads
 - Mostly C (6/4 GHz), Ku (14/12 GHz) bands
 - Capacity: some Gbps
 - “bent-pipe” repeater concept
 - Low noise amplification
 - Frequency conversion
 - Demultiplexing / Filtering
 - High-power amplification

Telecom satellites & payloads
Future broadband telecom missions

- Evolution driven by Multimedia / IP
 - interactivity in broadcast systems
 - bidirectional links: gateways/users & users/users

- Bandwidth increase & lower “transmitted bit” cost
 - migration to Ka-band (30 GHz / 20 GHz)

- New generation of high-directivity, multi-beam antennas
 - cellular coverage with frequency reuse
 - > 100 spots for global coverage

- Flexible payloads required
 - on-board switching for flexible beam-to-beam connectivity
 - versatile and transparent solutions (15-years)
Future broadband telecom payloads

- flexible, complex payloads: coverage, connectivity, frequency plan, bandwidth allocation …
- > 100 RF channels (10’s of MHz) over 10’s of antenna beams
- critical requirements in terms of mass, volume & power consumption
- future-proof solutions = transparent payloads (analogue or digital)
Potentials of photonic & µ-wave photonic technologies

- low mass and small size
- broad bandwidth
- RF isolation, suppression of EMC/EMI issues
- transparency to RF frequency
- multiplexing (WDM)

On-board applications

- LO delivery
- frequency mixing
- RF signal routing
- hi-throughput digital interconnects

…
Optical LO distribution
- optical LO source
 - SC laser modulation (MHz to GHz)
 - laser + EO modulator @ high frequency
- SMF splitters, tree-like optical network

Applications: all (analogue/digital) payloads
- mass savings, small size
- RF isolation, EMI free
- broad bandwidth, scalability …

Major achievements
- Optical distribution of USRO @ 10 MHz and MLO @ 800 MHz
- LO optical generation & distribution @ > 20GHz Double Side-Band with Carrier Suppression (DSB-CS)
Photonic RF frequency mixing

- based on mixing properties of Mach-Zehnder Electro-Optical Modulator
- together with bandpass O/E Rx, centred @ IF
- demonstrated with high IF/LO & IF/RF isolation
- RF gain & NF ~ compatible with overall design > low-drive, low-loss EO modulator

\[\omega_{IF} = \omega_{RF} - \omega_{LO} \]

EOM : electro-optical mixer
O/E : opto-electronic receiver
MWP repeater concept (ESA project)

- RF amplification and filtering
- Optical distribution of centralised LO's
- Optical (multiple) frequency-conversion
- Optical X-connection of μ-wave channels

Merits

- Flexible beam-to-beam connectivity
- Broadband, frequency-independent design
- Scalable to large sizes
- Low mass & volume, power consumption

Diagram:

- Rx section
- Tx section
- Rx antennas
- Tx antennas
- LNA: low-noise amplifier
- EOM: electro-optical mixer
- HPA: high-power amplifier
- Multiple optical LO's
- LO
- LO

LNA : low-noise amplifier
EOM : electro-optical mixer
HPA : high-power amplifier
Breadboard repeater demonstrator (ESA project)

- sub-populated, yet representative of full-scale repeater system
- Ka-band (30 to 4 GHz)
 1. Microwave Photonic LO source
 2. Photonic frequency-mixer
 3. 4x4 MEMS-based optical cross-connect
 4. Microwave opto-electronic receivers
Large, 3D Optical MEMS switches (ESA project)

- partnership with SERCALO (CH) : to develop a 50x50 switch demo
- array of I/O fibres and collimators, array of (MEMS) micro-mirrors with 3D steering
- complexity grows as 2.N, can grow to large scales (> 100x100)
- configurable as asymmetric matrices
Optical Multi-frequency Conversion (OMC) (ESA project)

- Wavelength-Division Multiplexing (WDM) of multiple microwave photonic LO’s
- Mixing an RF signal with multiple LO’s in electro-optical modulator
- Wavelength de-multiplexing
- Conversion to multiple IF signals
- Applications to payload sub-systems
 - Routing w/ frequency-slot interchange
 - Routing w/ frequency band interchange
 - Sub-band demultiplexing

Diagram:
- LNA: Low-noise amplifier
- EOM: Electro-optical mixer
- LO: Local oscillator
- WDM: Wavelength (de)multiplexer
- O/E: Optoelectronic receiver

Symbols:
- ω_{RF}: RF frequency
- ω_{LO1}, ω_{LO2}, ω_{LO3}: Local oscillator frequencies
- ω_{IF1}, ω_{IF2}, ω_{IF3}: IF frequencies
- $\omega_{RF} = \omega_{LO1}$, $\omega_{RF} = \omega_{LO2}$, $\omega_{RF} = \omega_{LO3}$

Equations:
- $\omega_{IF1} = \omega_{RF} - \omega_{LO1}$
- $\omega_{IF2} = \omega_{RF} - \omega_{LO2}$
- $\omega_{IF3} = \omega_{RF} - \omega_{LO3}$
Optical Multi-frequency Conversion (ESA project)

- Ka (30 GHz) to C (4 GHz) down-conversion
- with 2 LO’s, respectively @ 26.00 and 26.04 GHz
- conversion to 2 IF signals with frequency shift
- > 70 dB isolation between IF\textsubscript{1} & IF\textsubscript{2} signals
- no unwanted mixing products

![Graph](image)

IF\textsubscript{1} @ 4 GHz

IF\textsubscript{2} @ 3.96 GHz
Microwave photonic front-end for advanced antennas (CNES project)

- optical LO distribution
- frequency-conversion and IF remoting

Applications to multibeam receive antenna

- e.g. FAFR receive antenna
- with Digital Beam-Forming
- critical requirements on size, mass and dissipation at the antenna element

Major achievements

- Optical front-end architecture study
 - optical LO distribution @ 29 GHz
 - Ka/L frequency down-conversion
 - optical receiver with ADC
- Proof-of-concept & performance assessment
Conclusions

Photonic and μ-wave photonic technologies in future telecom payloads
- for enhancing conventional implementations (mass, density, isolation …)
- as enabling technologies for advanced subsystem concepts

Photonic and μ-wave photonic building blocks
- optical distribution of reference / master oscillators
- optical generation & distribution of high frequency LO’s
- optical frequency-conversion
- optical distribution cross-connection of μW signals
- high throughput digital interconnects
...

Proof-of concept demos have confirmed feasibility of sub-systems and proved good RF performance

Further work to improve performance AND integration, bring technology to higher maturity level, and prepare validation in on-orbit technology demos
Acknowledgements

- These works have been performed in the frame of ESA ARTES 5 projects and CNES projects

- The authors would like to thank their partners of these projects

- The authors would like to thank the European Space Agency and the French Space Agency (CNES) for their support during these projects

THANK YOU

Michel.sotom@thalesalenia.space.com
arnaud.le-kernec@thalesalenia.space.com