

The digital coherent revolution

Seb Savory

Optical Networks Group, UCL Department of Electronic and Electrical Engineering, University College London

1

Workshop presentation...

- The brief...
 - Talks should only be about "8-minutes" long
 - Should stimulate lots of discussion among the panelists and workshop attendees
 - Where appropriate point at controversial and/or yet unsolved issues

This talk

- Will briefly chart the digital coherent revolution
- Outlining the salient features of a coherent system
- Discuss the future challenges.

Revolutions take a while

- First "digital coherent receiver" @ 100 Mbit/s
- OPTICAL QPSK TRANSMISSION SYSTEM WITH NOVEL DIGITAL RECEIVER CONCEPT F. Derr, Elect. Lett. 7th Nov. 1991 Vol. 27 No. 23 (extended in a 1992 JLT)

Failed to impact the 2.5 Gbit/s systems of the day

The discontinuity

 Silicon and optical data rates have evolved at the same rate, albeit with a lag of ~ 12 years (x4 every 5 years)

 The delayed deployment of 40Gbit/s, allowed DSP to catch up with current 10Gbit/s optical line rates

Some key developments (many omissions!)

Year	Technological development
2003	20GSa/s, 8 bit ADC demonstrated using time-interleaving in 180nm CMOS
	Soon afterwards Taylor and Noé independently propose digital carrier
	recovery
2005	Tsukamoto demonstrates PDM-QPSK transmission over 200km
2006	Long haul transmission of PDM-QPSK with digital polarization tracking
2007	Long haul transmission of 111Gbit/s PDM-QPSK by Fludger et al.
2007	20GS/s 20M gate 90nm CMOS ASIC with 4 integrated ADCs
2008	112Gbit/s PDM-16QAM demonstrated by Winzer and Gnauck
2009	56GSa/s 8 bit ADC appear

Digital coherent systems have allowed both digital compensation of CD & PMD and spectrally efficient modulation formats & OFDM

This alone has caused a revolution in system design

Three elements of a digital coherent system

- The combination of spectrally efficient modulation, coherent detection and DSP is a symbiotic relationship
- Coherent detection maximises efficacy of DSP, and permits use of spectrally efficient modulation
- DSP simplifies the coherent receiver, removing need for optical phase and polarisation tracking
- Spectrally efficient modulation formats maximises the benefits afforded by digital coherent receivers

This combination is greater than the sum

Salient features of a digital coherent system

- Improved sensitivity
 - E.g. For Coherently detected DQPSK ~
 2.5dB improvement c.f. directly detected DQPSK
 - Traditional motivator for coherent detection, where photons per bit was minimised
- Linear receiver
 - Maps entire optical field into digital domain
 - Complexity moved from optical to digital domain (e.g. Pol tracking)
 - Enables equalisation of linear impairments (no DCF required)
 - Current motivator for coherent detection
- Frequency selectivity
 - Enables resolution of two 14Gbaud carriers separated by ~ 20GHz

Future digital coherent systems will use all three features

Digital Coherent Modems

Moving from Digital Coherent Receivers

To Digital Coherent Modems

- DSP could become software defined
 - Could trade off power consumption versus performance
 - Modulation format chosen according to situation
 - Tends towards embedded system based transceivers

Key challenges

- Optical fibre communication channel is a nonlinear MIMO system, with memory
- Current complexity dominated by channel memory due to dispersion (scales quadratically with symbol rate)
 - 2007 20M gates in 90nm CMOS demonstrated
 - Moore's law -> 40-50M gates should be possible now, but...
 - We will need all these extra gates to cope with increase channel memory, as we increase from 10.7Gbaud to 28 Gbaud
- Need low complexity nonlinear compensation
 - Nonlinear compensation currently offers 1-2 dB improvement
 - Soft decision coding may be more hardware efficient means of getting same improvement

Discussion points

- Coherent everywhere, from access to core
 - Direct detection for quantum communications and multimode fibre
- Case for OFDM versus single carrier not clear
 - OFDM well suited to non-flat channels...
 - E.g. Multimode fibre
 - Systems using ROADMs
 - But since coherent detection gives frequency selectivity, can drastically change ROADM architecture (50 GHz filters obsolete?)
- Designing a hybrid 100G PDM-QPSK coherent and 10G IM/DD system is a dead-end
 - Upgrade offers x10 improvement in speed
 - As speeds increase infrastructure changes (lessons from road transport).
 - We will remove the DCF, if this gives better performance

Thank you for listening

Questions?