

Challenges for VLSI implementation of 100G digital coherent receivers

Hiroshi ONAKA

FUJITSU Limited September 20, 2009

Acknowledgments

This study has partially received support of R&D on Highspeed Optical Transport System Technologies by MIC (Ministry of Internal Affairs and Communications)

Very much appreciate for cooperation by

- Fujitsu advanced technology
- Fujitsu Laboratories

Example configuration of 100G digital coherent LSI

Technical challenges

- Connection between ADC and DSP
- Lower power consumption
- Efficiency improvement of LSI development

Technical challenge 1 Connection between ADC and DSP

Case	Connection method		Technical Subjects
(a)	Interposer SiGe BiCMOS T/H ADC bank DSP T/H ADC bank	 Multichip configuration - ADC: SiGe Bi-CMOS - DSP: CMOS • Connection with digital signal 	 Tbps class digital interconnection between ADC and DSP Hybrid packaging of ADC and DSP
(b)	Interposer SiGe or InP ADC bank	 Multichip configuration -T/H: SiGe, InP etc. -ADC Bank, DSP: CMOS Connection with analog signal 	 Noise and crosstalk in connection of analogue signal Hybrid packaging of ADC and DSP
(c)	CMOS T/H ADC bank DSP ADC bank Direct I/F	Monolithic configuration -All functions are integrated on Si Direct connection on Si	Ideal configurationFeasibility of CMOS ADCMixed signal system LSI design

Discussion about power consumption of 100G MSA module in OIF

Power Dissipation

Assumption:

Air temperature before module: 55° C

▶ Module temperature: ~70° C

Maximum power dissipation:

Airflow	20 mm height with 13 mm fins	16 mm height with 17 mm fins
1 m/s	59W	65W
2 m/s	73W	80W

Question 31 - Maximum power allowed

≥ 80W

OIF2009.052.00 Drink Barthel CoreOptics

module size: 5 inch x 7 inch 6 inch x 8 inch

Technical challenge 2 Heating issue

40G DWDM 300pin MSA module

- Size: 5 inch x 7 inch
- Maximum power: ~ 30W

For 100G MSA module?

- 65W cannot be allowed considering junction temperature of transistor
- For 100G MSA module, it is necessary to decrease 35W or less, and target power of LSI should be about 15W
- Details will be discussed in next OIF meeting

Technical challenge 3 Efficiency improvement of VLSI development

Advantages of High-level Synthesis

Automated design process that interprets an algorithmic description using C++/System C and creates RTL (Resister Transfer Level) code

- Shortened design term: Introducing automatic design at early stage
- Decrease in design mistake: Human error is prevented by automated synthesis
- Expansion of design area: Better architecture can be decided in consideration of trade-offs because various choices can design/evaluate in a short time
- Easiness of design: Decrease of description amount and increase of understanding level by enhancing abstraction level of design

All systems simulator including transmitter, transmission line, and receiver model

Precise verification of DSP operation with restriction and condition of hardware by using all systems simulation

Design example by using High-level synthesis

Fixed Equalizer	Line number	Gate count
C model (System C)	3,091	
RTL (High-synthesis)	259,016	6.8M gates x2

Adaptive Equalizer	Line number	Gate count
C model (System C)	328	
RTL(High-synthesis)	42,712	3.4M gates

- Line number of Synthesized RTL increased to 100 times that of C model
- Line number of handwriting RTL increase to about 10 times that of C model
- Gate number by high-level synthesis confirms becoming the same as handwriting RTL

Estimated gate counts of 100G DSP

Total: 26.2 M Gates

Summary

- 100G DSP can be realize on a realistic gate scale. Necessary to reduce power by half for 5 inch x 7 inch MSA module
- High-level synthesis tool is very effective for development of 100G DSP
- All system simulation is very useful for precise verification of ADC/DSP operation

THE POSSIBILITIES ARE INFINITE