Reality check: Implementation of Soft-Decision FEC in a DSP LSI

September 20th, 2009
ECOC2009, Vienna

T. Sugihara

Mitsubishi Electric Corporation, Information Technology R\&D Center

Expectation for SD-FEC

■ For 100G FEC;
At least $4 \mathrm{~dB}(=10 \log (100 / 40))$ better correction capability than for 40Gbps is mandatory
$\mathrm{RS}(255,239)=6.9 \%$ redundancy $\rightarrow \mathrm{NCG}=5.8 \mathrm{~dB}\left(@ 10^{-13}\right)$
$5.8 \mathrm{~dB}+4 \mathrm{~dB}=9.8 \mathrm{~dB}$ is required
■ $\mathbf{~} 20 \%$ redundancy with soft decision decoding would be necessary
$\rightarrow>125 \mathrm{~Gb} / \mathrm{s}$ for OTU4V

To achieve NCG of $>10 \mathrm{~dB}$, SD-FEC is a promising technology for 100 G systems. How can we realize SD-FEC in a realistic LSI ? We check the implementation issues.

Issue 1: LSI Partitioning

■ Soft decision with >3 bits is required for nearly ideal performance
■ But, extremely complicated high speed I/O or circuit size
ex) Tx: 125G \rightarrow I/Q mod + Pol-Mux. \rightarrow 125G Opt. Signal Rx: 125G Opt. Signal $\rightarrow 4 x 6$-bit ADC $\rightarrow 3$-bit 125G out
\rightarrow 125G Soft-decision FEC

$125 \mathrm{G} \times 4=500 \mathrm{GI} / \mathrm{O}$

OTU4

$112 G \times 2=224 G$
$>$ Deployment of SD-FEC in a DSP LSI is one of the solution to realize an optical transceiver.

Issue 2: Multi-lane Distribution

■ Generally, FEC frame format should be re-aligned correctly before SD-FEC decoder.
■ But, Sub-bit skew and lane-switching are inevitable in a multi-lane transmission. ex) DP-QPSK: 4-lane of (lx, Qx, ly, Qy) transmitted in an optical fiber.
\rightarrow Skew and lane-switching between two polarization caused by PMD. Lane-switching between I-ch and Q-ch caused by cycle-slips.
$>$ MLD-like lane re-alignment: Use OTU-OH (MFAS, etc.), easy to implement.
De-skew and

$>$ Individual FEC frame: FEC frame for each transmission lane, properly decoding despite lane-order change.

De-skew and

$>$ Optimum choice of combination of MLD-like lane distribution and FEC
frame structure is important design parameter.

Issue 3: Toward One-chip LSI

■ FPGA based SD-FEC emulator
90nm CMOS, 2 Mgates/fpga for $10 \mathrm{~Gb} / \mathrm{s}$ throughput LDPC, 2-bit soft decision, 4-iteration $\rightarrow 16$ Mgates
T. Mizuochi, et al., ECOC2009, Tu.5.4, Symposium.

■ 100G SD-FEC: $16 \times 10=160$ Mgates

1. Min-sum based algorithm
2. Optimization of coding parameter
3. Optimization of parallel expansion and pipe-line insertion
4. Progress of process technology (At least, < 45nm is preferable)

FPGA Emulator
> To apply our developing algorithm based on LDPC, one-chip LSI for 100 G is expected to emerge soon.

Conclusion

- To achieve NCG of $>10 \mathrm{~dB}$ using soft decision FEC, realistic implementation issues are discussed.

■ In order to relax the design of circuit board, deployment of SD-FEC in a DSP LSI is one of the solutions to realize an optical transceiver.
(OTU4V framer + HD-FEC + SD-FEC) + DSP

$$
\rightarrow \text { (OTU4 framer + HD-FEC) + (DSP + SD-FEC) }
$$

■ Considering the lane-distribution in the optical transmission, we must take care of the skew and lane-switching.

MLD-like operation before SD-FEC decoder Individual FEC frame to each transmission lane

- One-chip LSI of SD-FEC is expected to appear soon.

Establishment of more sophisticated algorithm and progress of CMOS process brings 100G LSI having NCG of >10dB. It may emerge in 2010~2011.

