



DSP & FEC: Towards the Shannon Limit



Timo Pfau

Sept. 20, 2009

## Agenda

- 1. From 40G/100G to 400G
- 2. Implementation possibilities for 400G systems
- 3. Requirements for QAM with square constellations
- 4. Summary

# Transition from 10G through 40G/100G to 400G Fundamental limits

40G/100G systems have roughly the same robustness against distortions as 10G systems.

### Enabling technologies:

PSK/QPSK instead of OOK
 Highest SNR tolerance

Polarization-multiplex
 No improvement possible

Coherent detection & DSP

More efficient FECs

Space for improvements

400G systems will most likely have a lower tolerance against distortions (SNR, nonlinear effects) than 40G/100G systems.

# Implementation of 400G transmission systems The agony of choice

#### Single carrier transmission



#### **OFDM**

#### High-level constellations



#### Low-level constellations

- High spectral efficiency
- Low symbol rate

- High noise tolerance
- Long transmission range

#### Star constellations



#### istellations

- Good phase noise tolerance
- # of diff. encoded bits depends on # of beams

## Square constellations

- Good ASE noise tolerance
- Max. number of diff. encoded bits is 2.

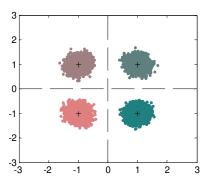
### Blind equalization

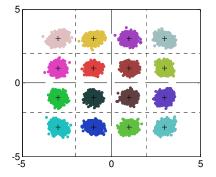
- Non-data-aided
- Decision-directed

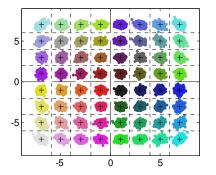


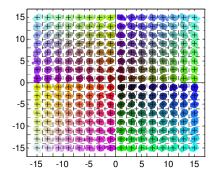
### Pilot-assisted equalization

- At start-up
- Continuously





...


# 400G transmission systems using square QAM constellations OSNR requirements

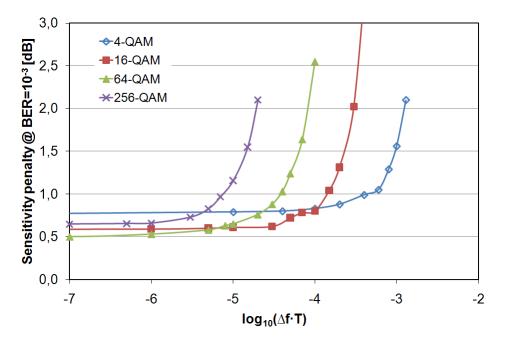

## 448 Gb/s polarization-multiplexed square QAM transmission system

|                                  | 4-QAM (QPSK) | 16-QAM   | 64-QAM    | 256-QAM   |
|----------------------------------|--------------|----------|-----------|-----------|
| Spectral efficiency              | 4 b/s/Hz     | 8 b/s/Hz | 12 b/s/Hz | 16 b/s/Hz |
| Bandwidth                        | 112 GHz      | 56 GHz   | 37 GHz    | 28 GHz    |
| OSNR for<br>BER=10 <sup>-3</sup> | 16.3 dB      | 20.1 dB  | 24.3 dB   | 28.9 dB   |











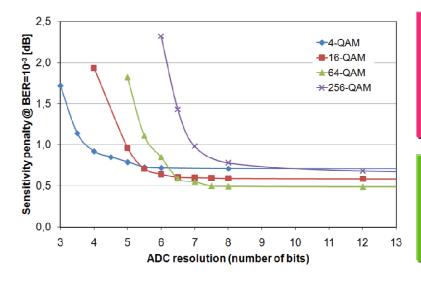

## 400G transmission systems using square QAM constellations Phase noise tolerance

## 448 Gb/s polarization-multiplexed square QAM transmission system

|                                   | 4-QAM (QPSK) | 16-QAM  | 64-QAM  | 256-QAM |
|-----------------------------------|--------------|---------|---------|---------|
| Laser<br>linewidth <sup>[1]</sup> | 22.5 MHz     | 3.9 MHz | 750 kHz | 110 kHz |



QPSK and 16-QAM can be realized with DFB lasers.


64-QAM and 256-QAM require ECLs.

[1] T. Pfau et al., IEEE J. Lightwave Technology, Vol. 27, No. 8, April 2009, pp. 989-999

## 400G transmission systems using square QAM constellations Analog-to-digital converter requirements

### 448 Gb/s polarization-multiplexed square QAM transmission system

|                                     | 4-QAM (QPSK) | 16-QAM    | 64-QAM   | 256-QAM  |
|-------------------------------------|--------------|-----------|----------|----------|
| Sampling rate (T/2-spaced sampling) | 224 GSa/s    | 112 GSa/s | 74 GSa/s | 56 GSa/s |
| Effective # of bits (ENOB) [1]      | 3.8          | 4.9       | 5.7      | 7.0      |



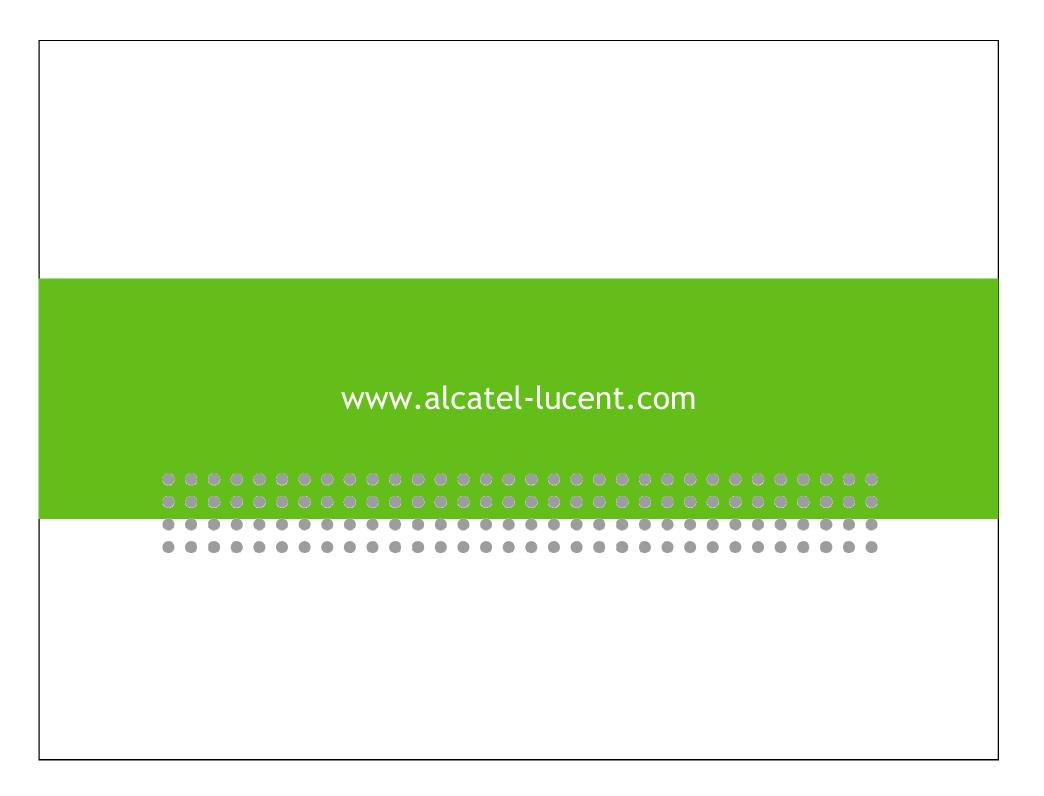
56 GSa/s 8-bit analog-to-digital converter is available today (ENOB > 6-bit).

Source: http://www.fujitsu.com/emea/services/microelectronics/dataconverters/chais/index.html

30 GSa/s 6-bit digital-to-analog converter is available today (ENOB > 5-bit).

Source: http://www.micram.de/index.php/products/vega

[1] T. Pfau et al., IEEE J. Lightwave Technology, Vol. 27, No. 8, April 2009, pp. 989-999


# 400G transmission systems using square QAM constellations Summary of system properties

## 448 Gb/s polarization-multiplexed square QAM transmission system

|                                     | 4-QAM (QPSK) | 16-QAM    | 64-QAM    | 256-QAM   |
|-------------------------------------|--------------|-----------|-----------|-----------|
| Spectral efficiency                 | 4 b/s/Hz     | 8 b/s/Hz  | 12 b/s/Hz | 16 b/s/Hz |
| Bandwidth                           | 112 GHz      | 56 GHz    | 37 GHz    | 28 GHz    |
| OSNR for<br>BER=10 <sup>-3</sup>    | 16.3 dB      | 20.1 dB   | 24.3 dB   | 28.9 dB   |
| Diff. coding penalty                | 2            | 1.67      | 1.43      | 1.27      |
| Laser<br>linewidth                  | 22.5 MHz     | 3.9 MHz   | 750 kHz   | 110 kHz   |
| Sampling rate (T/2-spaced sampling) | 224 GSa/s    | 112 GSa/s | 74 GSa/s  | 56 GSa/s  |
| Effective # of bits (ENOB)          | 3.8          | 4.9       | 5.7       | 7.0       |

## Summary

- 400G systems will place higher requirements on the network infrastructure.
- There is a huge variety of implementation possibilities.
- Real-time implementation of 400G systems will be possible in the near future.

