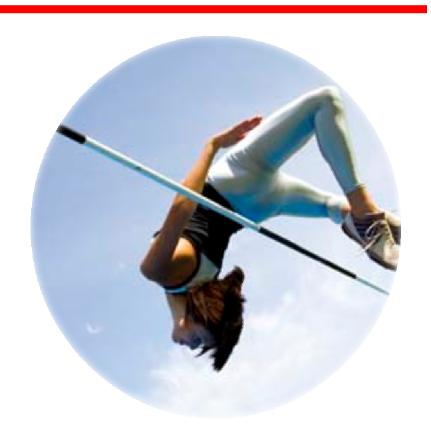
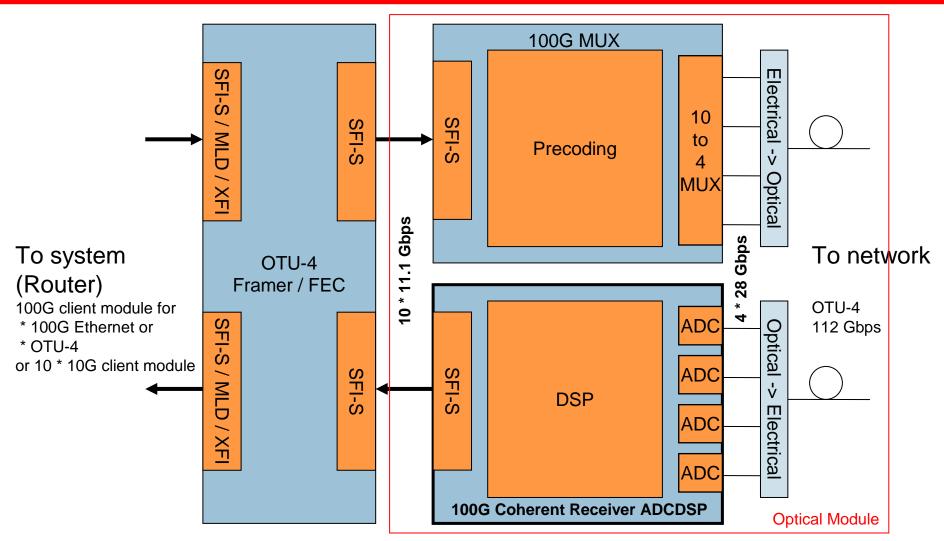


Reality Check: Challenges of mixed-signal VLSI design for high-speed optical communications




Mixed-signal VLSI for 100G and beyond

- 100G optical transport system
- Why single-chip CMOS?
- So what is so difficult?
- CHAIS ADC
- On-chip noise coupling
- Package and PCB design
- Testing issues
- Future challenges

100G Optical Transport system

Why single-chip CMOS for 100G?

Massive data bandwidth between ADC/DAC and digital

- 4-channel 8b 56Gs/s ADC/DAC means 1.8Tb/s of data at interface
- Getting this from one chip to another costs power and chip area
 - 10G SERDES link ~250mW/channel → ~10W per ADC or DAC

Critical performance factor is power efficiency, not just speed

- Discrete ADC/DAC (e.g SiGe) dissipating ~20W each (including I/O) are difficult to use
 - Very high total power dissipation in package (>100W for multiple channels)
 - Skew management/calibration problem (especially over temperature/lifetime)

■ Single-chip CMOS solution is the "Holy Grail"

- Integrate on ASIC with >50M gates or memory (size limited by power dissipation)
- Leverage CMOS technology advances to drive down power and cost
- ADC and DAC get faster and lower power at the same rate as digital -- hopefully ©

ADCDSP -- so what is so difficult?

ADC is the biggest circuit design problem

- Ultra-high speed, low noise and jitter, low power consumption all at the same time…
- Conventional techniques cannot easily deliver required performance

Digital-analogue noise coupling

Sampler/clock jitter ~100fs on same chip as DSP with >100A current spikes

■ Wide bandwidth (>20GHz) and good S11 (up to >30GHz)

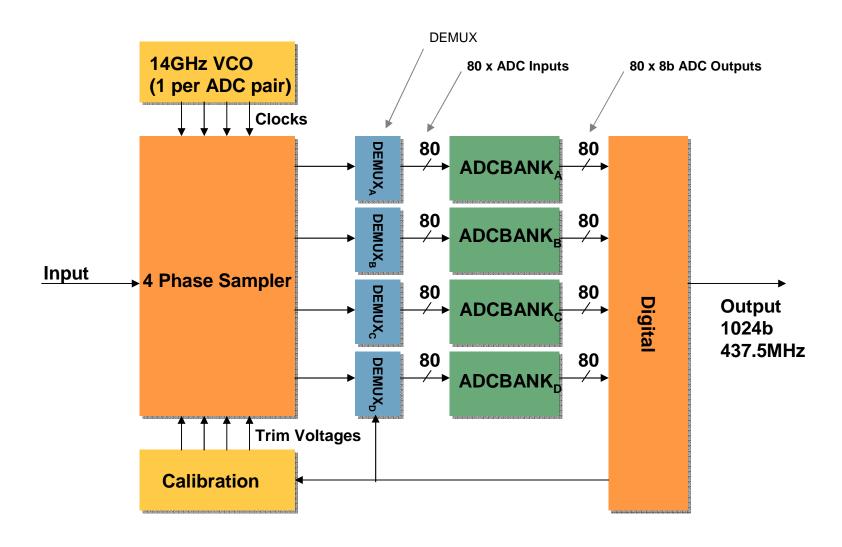
Sampler, package, PCB design all very challenging with high pin count FCBGA

On-chip DSP design is very out-of-the-ordinary (multiple TeraOPS)

■ Extremely power-efficient → use massive parallelism, not GHz clocks (Pentium 4…)

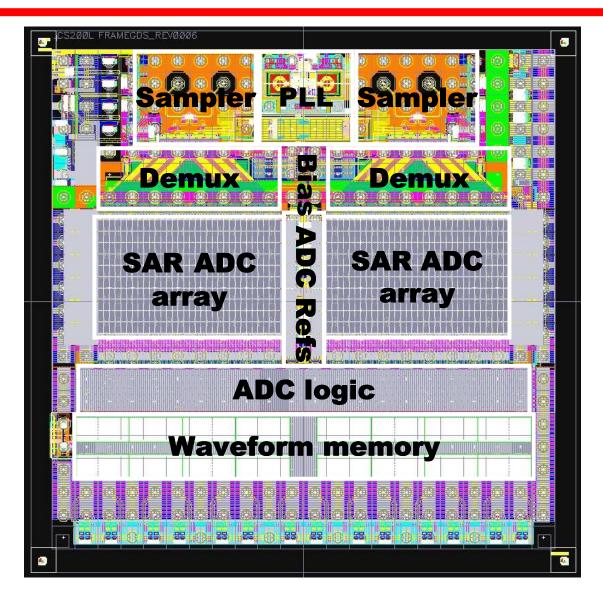
Test

- Performance verification challenges limits of test equipment
- Need at-speed performance verification in production, not just functional testing



The ADC problem

- Wideband low-noise sampler + demultiplexer + interleaved ADC array
 - Smaller CMOS geometries → higher speed → worse mismatch and noise
- Single 56Gs/s track/hold very difficult due to extreme speed
 - <9ps to acquire, <9ps to transfer to following interleaved T/H stages</p>
- Interleaved track/hold (e.g. 4-channel 14Gs/s) also very difficult
 - Signal/clock delays must match to <<1ps how do you measure this?</p>
- Noise, mismatch and power of cascaded circuits all adds up
 - Multiple sampling capacitors, buffers, switches, demultiplexers...
- Layout and interconnect extremely challenging
 - Design the circuits, then find you can't actually connect everything up...
- Interleaved ADC back-end is not so difficult (only in comparison!)
 - Design for best power and area efficiency rather than highest speed
 - Interleave as many as necessary to achieve required sampling rate
 - 8 x 175Ms/s 8b SAR ADCs fit underneath 1 solder bump → 45Gs/s per sq mm ©



A 56Gs/s CMOS ADC solution – CHArge-mode Interleaved Sampler (CHAIS)

Dual ADC layout (4mm x 4mm test chip)

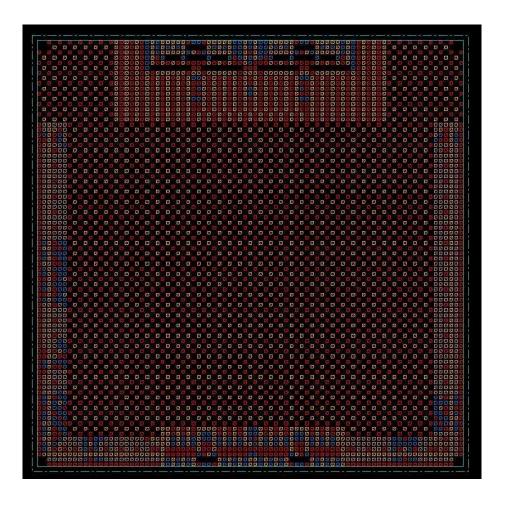
Example of 100G coherent receiver ASIC

■ Architecture: Single CMOS die

■Technology: 65nm CMOS

■Interconnect: 12 layer metal

■Die size: 15 mm x 15 mm


■Gate count: ~50 million gates

■Package: FCBGA, >1000 pins

■M/S macros: 4 channel 56 Gs/s ADC

24 channel CEI-11G TX

■ADC power : ~2W/channel

The DSP problem

Digital design tools (and designers) *really* don't like this type of DSP

- The tools (and designers) synthesize circuits, then worry about how to connect them up
 - But interconnect capacitance causes ~90% of power dissipation, not circuits
- Massive data bus widths (4k bits at ADC outputs) massive interconnect problem

Partitioning into usable size blocks may be more difficult than it appears

- Tools don't like doing flat designs with tens of millions of gates (turn-around time)
 - "OK, lets split that big DSP block into two and add some pipelining"
 - "Erm, about this 16k bit wide data bus you've just introduced..."

Better system/architecture tools for this type of design are needed

- Should really design/optimise the data flow, then shovel the circuits in underneath...
 - Designers' brains (and system-level design tools) don't really think this way 🕾

On-chip noise coupling

■ Reduce aggressor (DSP logic) noise generation

- Use intentional skew of clock timing within each block and between blocks
 - Reduces peak current and spreads out in time → >10x lower di/dt
- Lots of on-chip (~400nF) and ultra-low-inductance (~4pH) in-package decoupling

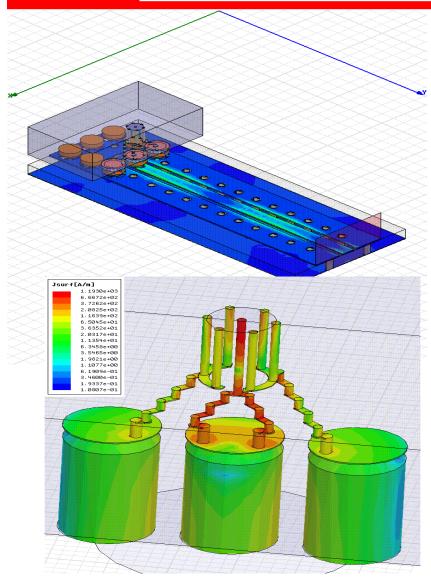
Increase victim (ADC analogue) immunity

- Fewest possible noise/jitter sensitive circuits, all fully differential
- Lots of on-chip (~100nF) and low-inductance in-package decoupling

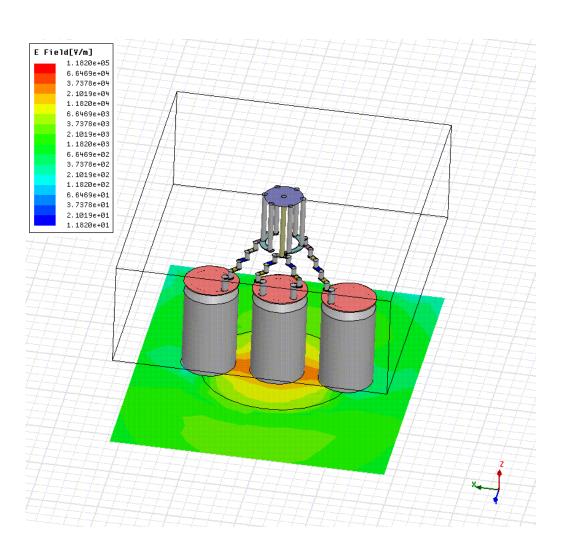
Improve victim-aggressor isolation

- Avoid low-resistance epi substrate (short-circuit for substrate noise)
- Build "nested walls" of isolation with most sensitive circuits in the middle
 - SAR ADCs (not jitter-sensitive) form the first line of defense
 - Isolation walls through package and into chip form the next line
 - Demux and other analogue circuits (calibration etc.) form the next line
 - Sampler and PLL are hidden away inside all these layers of isolation

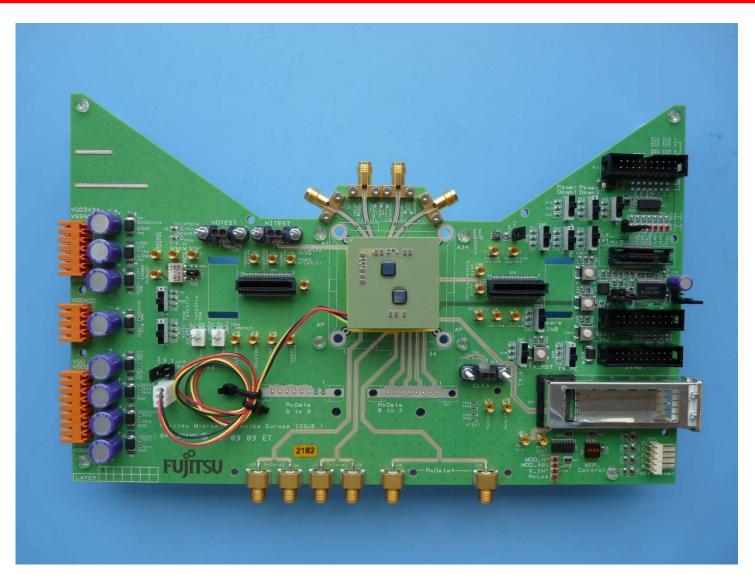
■ Measurements show very little noise makes it past all the defenses ☺



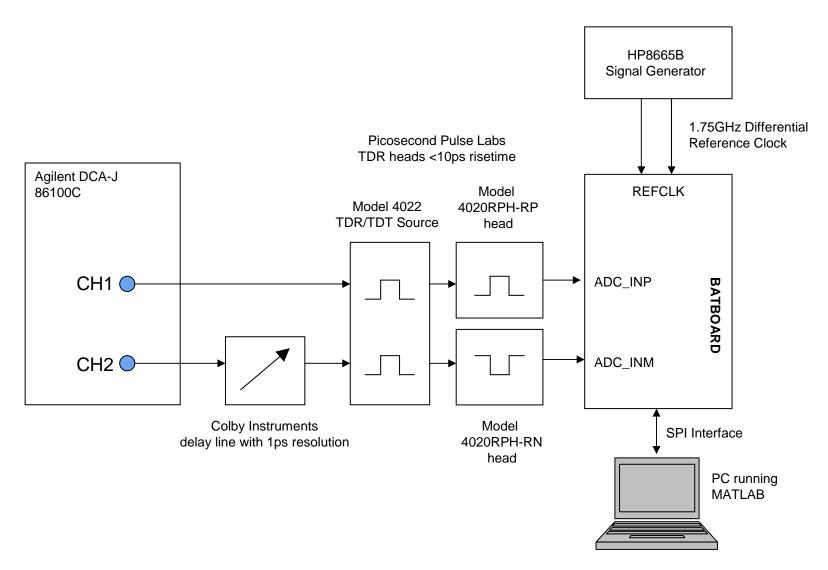
Package and PCB design


- 1mm pitch FCBGA, >1000 pins, 19 internal layers, copper lid
 - Use similar package for test chips as typical ASIC to get same performance
 - Low-loss high-TCE LTCC (12ppm/C) for improved second-level reliability
- Multiple power/ground regions and shields for noise isolation
- Ultra-low-inductance internal decoupling for supplies and bias/reference
 - Multiple interleaved VDD/VSS planes connect chip to multi-terminal decouplers
 - Noise dealt with inside package → predictable (stops end user getting it wrong)
- Coaxial via and waveguide structures, <1dB loss at 20GHz</p>
 - Ground planes completely removed above signal balls to reduce capacitance
 - Dual 100ohm balanced lines used to connect coaxial via structure to G-S-G pads
- Optimized launch to G-S-G coplanar waveguide on low-loss PCB
 - Balls on row inside signal pins removed to reduce capacitance, grounds cut back
 - Outer PCB layers use MEW Megtron 6 (very low loss, lead-free multilayer compatible)

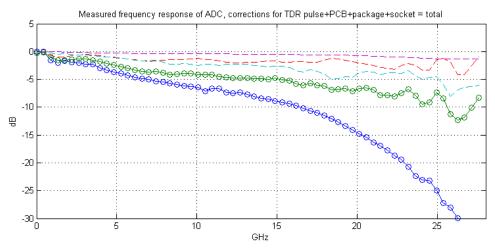
Package + PCB EM field simulations



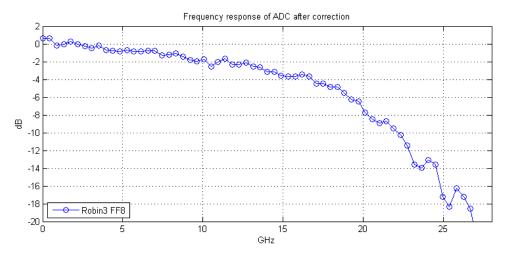
ECOC2009 - Towards the Shannon limit



BATBOARD and **ROBIN**



Bandwidth measurement using TDR step



Frequency Response (test setup and ADC)

• Frequency response of test setup

- TDR step (measured)
- Batboard PCB (measured)
 - ENIG not Ag finish (Ni is lossy!)
- Socket (estimated -1dB @ 20 GHz)
- Test setup loss similar to ADC response

Corrected ADC frequency response

- accurate measurements are not easy
- ADC -3dB bandwidth ~ 15GHz
 - very close to simulation and specification

Need proper performance verification, not just functionality

- Increased confidence that chip actually meets design specifications
- Make chip self-testing as far as possible and do at-speed performance tests

Drive ADC inputs from wideband n-way power combiners

- Sum outputs of multiple CEI-11G channels with sinewave input(s)
- Enable and disable channels/clocks instead of switching (avoid 20GHz+ relays)

■ Test ADC ENOB using sinewave input(s)

- Sampled data stored in on-chip RAMs then read out and analysed (ENOB)
- Signal source TBD (filtered DRO? phase locked to REF?) high quality essential

■ Test CEI-11G outputs by looping back into 56Gs/s ADC inputs

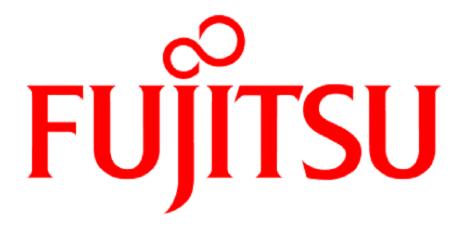
- 5 samples per bit gives complete waveform analysis on *all* TX channels
- Full-speed measurement of eye opening and jitter

Future challenges -- what obstacles are there to progress beyond 100Gb/s?

Sampler noise/bandwidth/interleave skew/clock jitter

- Can be solved using new CMOS techniques instead of exotic technology
 - CHAIS sampler/demux/ADC is capable of >100Gs/s even in 65nm
 - Bandwidth scales with clock rate (-3dB at ~0.3Fs)

Input bandwidth increase and S11 improvement


- FBGA package modifications to optimize design for very high frequencies
 - Smaller ball pitch conflicts with second-level reliability and PCB issues

■ Power consumption – DSP issue, ADC is ~2W/channel (65nm, scales like digital)

- DSP power is several times ADC power, especially with more complex systems
 - Power increase (complexity) is outrunning power savings (process shrink)

Layout (interconnect and floorplan) feasibility

- Everything wants to be on top of everything else with zero-length connections \(\operatorname{\operatorname{O}} \)
 - Could need unconventional layouts ADCs might look like dartboards ☺

THE POSSIBILITIES ARE INFINITE