

CoreOpticsEnabling Open Tolerant Networks

System level trade-offs in the design of a coherent receiver

Chris Fludger ECOC2009

Driver

- Driver is always cost
 - CAPEX
 - More data capacity for less money (Gbits/Euro)

- less power dissipation
- simplify maintainence costs

WHAT CAN YOU DO IN ELECTRONICS TO REDUCE COST ??

Printed: 9/28/2009 - 2 -

System level trade-offs: Possibilities

- Equaliser for CD mitigation
 - Remove DCMs / Amplifiers (CAPEX)
 - More CD reduces XPM from other channels
- Equaliser for PMD mitigation
 - Bad fibre can be used
- Removal of wavelength demux filters
- Non-linear compensation : Optical field is detected
 - Intra-channel
 - Inter-channel
- Channel parameter estimation
 - Measure CD / DGD / Polarisation variations

Printed: 9/28/2009 - 3 -

Receiver block diagram

Building blocks are common to 40/100G CP-QPSK / OFDM

Printed: 9/28/2009 - 4 -

Receiver block diagram

Building blocks are common to 40/100G CP-QPSK / n-QAM / OFDM

Printed: 9/28/2009 - 5 -

Cost Critical trade-offs

Optical components tend to be expensive

Balanced receivers

- Better rejection of common-mode noise
- Higher sensitivity / dynamic range
- Expensive

- Shared Tx/Rx laser
 - Reduced cost
 - Transmit and receive wavelength must be the same
 - Reduced output power

e.g. Hybrids and photo-detectors

Power Critical

• Once the signal is digitized, CMOS technology can process the data efficiently in parallel.

Printed: 9/28/2009 -7-

Power Critical trade-offs

General

- Fixed value multiplication is good
 - e.g. FFT or other transforms
- Fixed value tables are good
- Running a technology (45/65nm) at high frequencies increases gate count and power dissipation
- High-speed Input/Output ports should be minimised
- Control loops e.g. filter update
 - Latency can be a problem for feedback loops
 - Feed-forward schemes are possible
- Equalisation
 - CD Filter length increases with baud-rate²
 - Frequency domain computation is cheap
 - Required precision increases with FFT size

Challenges for 100G (28Gbaud)

Low cost optical components

- Power dissipation for ASICs
 - CMOS processors must do more in parallel
 - Symbols to be processed per clock cycle increases
 - Large filters for CD / PMD
 - CD scales as bitrate², PMD as bitrate
 - Polarisation tracking requirements is static

Printed: 9/28/2009 - 9 -

Chromatic Dispersion: 2000 km SMF

PMD and polarisation tracking

Impulse response is ~2.5 times longer at 28Gbaud Rate of Polarisation change is the same

Printed: 9/28/2009 - 11 -

Challenges for 100G (28Gbaud)

- Clock recovery
 - Jitter tolerance masks are very stringent
 - Clock recovery must work with high dispersion and distortion

- OSNR limitation
 - Raman amplifiers are expensive
 - Higher launch powers required
 - Robust against non-linearities
 - FEC increases power dissipation and line-rate

Printed: 9/28/2009 -- 12 --

Conclusions

- The driver for Coherent receivers is cost reduction.
- Efficient algorithms can be designed for parallel processing
- Challenges for 100G
 - cost of optical components
 - power dissipation of signal processing

Printed: 9/28/2009 - 13 -