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Optical interconnects — gold plated
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Exascale systems arithmetic...

10 Teraflop manycore 1 Exaflop
processor by 2017 10 Teraflop
256 cores per socket : .
~200W = 100,000 nodes

Total system power 20MW

How do we connect them
all up?
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Not a grid or torus — too
many hops
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Not centrélized — too
difficult to wire
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Fully connected sub-networks In
multiple dimensions*

5

Direct network — switch is
embedded in processor

Avoids wiring complexity of

central switches (fat trees)

Much lower hop count than
grids and torus

But many different interconnect
lengths

[ 2 Y S\

Low hop count means:-

( r
improved latency ]

lower power

less connectors

*Dally & Kim, Flattened Butterfly
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Example exascale photonic
Interconnect network
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- Embedded high radix routers

allow the construction of
direct networks with very low
hop counts.

Example network — 64K
nodes arranged in 256
enclosures of 16 cards

Maximum 4 hops between
any two nodes

- Chip links must span the

entire data center

IQSL/Optical
Interconnects for High-
Performance Computing March 11, 2009
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Exaflop interconnect requirements
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How many connections?
Assume 4 dimensions (board, rack, X, Y)
= (4/100,000 —1)x 4 ~ 68
How much bandwidth?
Assume compute communication ratio of 0.1Bytes/flop

_ 1O><10006><80.1><8><4 _ 470Gbit /

47 lambdas at10Gbit/s modulation

How much power?
Assume |O power budget of 5%

- 200x0.05x1000
470x 68

=0.312mW /Gbit /s
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Power and bandwidth targets

require integrated photonics




Ring resonator based CMOS Integrated

Photonics

9

Why ring resonators?
Inherently DWDM

Potential for very low
power operation

Small silicon area

Use stacking to avoid
modifying CMOS
processes

Tuning and
temperature control

ISSuUes...
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Ring Resonators
One basic structure, 3 applications
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A modulator — move in and out of resonance to modulate light on
adjacent waveguide

A switch — transfers light between waveguides only when the
resonator is tuned

A wavelength specific detector - add a doped junction to perform the
receive function
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Point to point DWDM link

Silcon ridge waveguide

unmodulated
SIbAUSFEcl?E light 0.5um wide 5 pm pitch
(shared) 64 lambdas Delay 118ps/cm
Loss 3dB/cm

splitter

000
[ s

to other Array of 64 modulator rings
channels
O\

Single mode fiber
__——10pm mode diameter Fiber coupler if going off chip Wavwelength (nm) 1310
~— Delay 5ns/m

Loss 0.4dB/km

Wavelengths 64

Channel Spacing (GHz) 80

AL O OO0O00O Modulate Freq (GHz) 10
U ; 6 O O O : Data Rate (Gbytes/s) 80
Link Power (mW) 64
Energy (WW/Gb/s) 100

Array of 64 detector rings
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I What about less extreme systems?
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Processor performance
continuing to grow
through core count
scaling

Memory bandwidth not
scaling with core counts

|ldeally would like 1byte
per flop memory systems

10Tbytes/s in 2017

Capacity scaling equally
important
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DWDM optics to the memory
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no laser on module,
power from bus
master

controller/interface
cost amortized over
multiple DRAM stacks

daisy-chaining to
further modules for

memory expansion :m:
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Optics to multiple points across a chip

reduces requirement

for DRAM global smaller DRAM
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I Key requirements for integrated
photonics

Power - anything lower than 0.5mW/Gbit/s is
interesting for chip to chip 10

Further reducing power makes intrachip
iInterconnect attractive

Connectivity - ability to make 100s of optical
connections per device to exploit integration
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I Conclusions

Today — optics necessitated by distance

Tomorrow — optics to create differentiated
products

Future — optics necessitated by power &
bandwidth
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