Optics and the exascale data center

Moray McLaren Exascale Computing Lab

© 2008 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice

Optical interconnects – gold plated plumbing for computers?

Exascale systems arithmetic...

- 10 Teraflop manycore processor by 2017
 - 256 cores per socket
 - ~200W
- Total system power 20MW
- How do we connect them all up?

Not copper! - too bulky

Not a grid or torus – too many hops

Fully connected sub-networks in multiple dimensions*

- Direct network switch is embedded in processor
 - Avoids wiring complexity of central switches (fat trees)
- Much lower hop count than grids and torus
 - But many different interconnect lengths
- Low hop count means:-
 - improved latency
 - lower power
 - less connectors

*Dally & Kim, Flattened Butterfly

Example exascale photonic interconnect network

- Embedded high radix routers allow the construction of direct networks with very low hop counts.
- Example network 64K nodes arranged in 256 enclosures of 16 cards
- Maximum 4 hops between any two nodes
- Chip links must span the entire data center

6

Exaflop interconnect requirements

- How many connections?
 - Assume 4 dimensions (board, rack, X, Y)

$$=(\sqrt[4]{100,000}-1)\times4\approx68$$

- How much bandwidth?
 - Assume compute communication ratio of 0.1Bytes/flop

$$=\frac{10\times1000\times0.1\times8\times4}{68}=470Gbit/s$$

- 47 lambdas at10Gbit/s modulation

- How much power?
 - Assume IO power budget of 5%

$$=\frac{200\times0.05\times1000}{470\times68}=0.312mW/Gbit/s$$

Power and bandwidth targets require integrated photonics

Ring resonator based CMOS Integrated Photonics

- Why ring resonators?
 - Inherently DWDM
 - Potential for very low power operation
 - Small silicon area
- Use stacking to avoid modifying CMOS processes
- Tuning and temperature control issues...

Ring Resonators

One basic structure, 3 applications

- A modulator move in and out of resonance to modulate light on adjacent waveguide
- A switch transfers light between waveguides only when the resonator is tuned
- A wavelength specific detector add a doped junction to perform the receive function

Point to point DWDM link

Wavelength (nm)	1310
Wavelengths	64
Channel Spacing (GHz)	80
Modulate Freq (GHz)	10
Data Rate (Gbytes/s)	80
Link Power (mW)	64
Energy (µW/Gb/s)	100

What about less extreme systems?

- Processor performance continuing to grow through core count scaling
- Memory bandwidth not scaling with core counts
- Ideally would like 1byte per flop memory systems
 - 10Tbytes/s in 2017
- Capacity scaling equally important

DWDM optics to the memory

- no laser on module, power from bus master
- controller/interface cost amortized over multiple DRAM stacks
- daisy-chaining to further modules for memory expansion

- standard stacked DRAM technology
- use widest interface possible for BW

Optics to multiple points across a chip

- reduces requirement for DRAM global interconnect saving power and access time
- daisy-chaining to further modules for memory expansion

Through Silicon Vias forming vertical data buses

- smaller DRAM mats
 - ½ power consumption
 - ½ access time

Key requirements for integrated photonics

- Power anything lower than 0.5mW/Gbit/s is interesting for chip to chip IO
- Further reducing power makes intrachip interconnect attractive
- Connectivity ability to make 100s of optical connections per device to exploit integration

Conclusions

- Today optics necessitated by distance
- Tomorrow optics to create differentiated products
- Future optics necessitated by power & bandwidth

