Bonded Photonic Structure Incorporated into a Chip

Keishi Ohashi*1,*2
Masafumi Nakada*1,*2
Takahiro Nakamura*2

*1MIRAI-Selete
*2NEC Corporation

ECOC 2009 WS3
“Optics in Computing – How much is enough?”

September 20-24, 2009, Vienna, Austria
Acknowledgements

This work was partly supported by NEDO (New Energy and Industrial Technology Development Organization).

NEC Junich Fujikata, Tsutomu Ishi, Koichi Nose, Toshio Baba, Kikuo Makita, Shigeru Nakamura, Kazuhiko Kurata, Shigeyuki Yanagimachi, Tao Chu, Hirohito Yamada

Selete Hisatsune Watanabe, Tohru Mogami, Takanori Shimizu, Jun Ushida, Masao Kinoshita, Nobuo Suzuki, Toshihide Ueno, Kenichi Nishi

NTT Toshifumi Watanabe, Yasushi Tsuchizawa, Kouji Yamada, Seiichi Itabashi
Outline

1. Optical Interconnection
2. Interconnect Era
3. Nanophotonics
4. Si Photonics for Photonic NW: or vice versa
5. Summary
1. Optical Interconnection
2. Interconnect Era
3. Nanophotonics
4. Si Photonics for Optical NW: or vice versa
5. Summary
Optical Interconnects in Electronics

Penetration of high data capacity optical communication from long-haul to short-distance interconnect.

- Telecommunication: km
- Between Computers: m
- Between Boards: cm
- Between Chips: mm

Larger Market

Smaller Distance
On-Bord Optical Interconnection

Short Electrical Signal lines

Optical Fibers

Photoelectric Devices

- 10Gbps x 4 Ch Transceiver
- 14mm x 14mm

Courtesy of K. Kurata
Optical Interconnection between CPU & Memory in HPC

- Small size of 5 mm2, 20 Gbps x 12ch OE/EO converters with a water-cooling module
- ~1000-channel OE converter is attached around CPU
- High reliability VCSEL ($\lambda = 1.07 \mu m$) is developed

Courtesy of K. Kurata
Replacement of Electrical Interconnect to Optical One

External EO/OE Module

Optical Interconnect Using Photonic SiP

LSI On-chip Optical Interconnect

50-200 mm

5-10 mm

<5 mm

Courtesy of Y. Hashimoto & S. Yanagimachi

Electrical Interconnect

Optical Interconnect

Optical Connector

LSI

EO/OE

Waveguide

Fiber

3D LSI

Empowered by Innovation

NEC
Cross Point for On Board Interconnection

75 cm @ 6 Gbps

Optics gives lower power consumption for back plane (~1 m)

Outline

1. Optical Interconnection

2. Interconnect Era

3. Nanophotonics

4. Si Photonics for Optical NW: or vice versa

5. Summary
In 2012, a 1-mm-long interconnect’s latency will be 100 times larger, and its binary switching energy will be 30 times larger, than a corresponding transistor.

Dynamic power is larger than heat removal capacity

N. Magen et al, *SLIP 04*
Electrical Interconnect

20 mm-interconnects with repeaters

M. Mizuno et al., ISSCC 2001
Electrical Interconnect

Bill Dally, ISSCC 2005

<table>
<thead>
<tr>
<th>Operation</th>
<th>Energy (130 nm, 1.2 V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>32-bit ALU operation</td>
<td>5 pJ</td>
</tr>
<tr>
<td>32-bit register read</td>
<td>10 pJ</td>
</tr>
<tr>
<td>Read 32 bits from 8K RAM</td>
<td>50 pJ</td>
</tr>
<tr>
<td>Move 32 bits across 10 mm chip</td>
<td>100 pJ</td>
</tr>
<tr>
<td>Move 32 bits off chip</td>
<td>1300 to 1900 pJ</td>
</tr>
</tbody>
</table>

High Power Consumption by Interconnect
From Electrical To Optical

Electrical Interconnect

Circuit

Cu/Low-k, Repeaters

Optical Interconnect

Light Source

Driver

Modulator

Optical Waveguide

Amp

Photodiode

Circuit

Advantages: No repeaters, Small delay, Small jitter, Immune to EMI, High data capacity, …
Reduce overhead by introducing micro EO and OE devices @10 Gbps.

Current

Target

Optical Interconnect

Electric Interconnect

hp65(2007)

hp22(2016)

1pJ / 1bit

1W / 1Tbps
Outline

1. Optical Interconnection
2. Interconnect Era
3. Nanophotonics
4. Si Photonics for Optical NW: or vice versa
5. Summary
Size Comparison: Light vs. Electron

Wavelength of **light** (visible - near IR)

\[\sim 1000 \text{ nm} \]

De Broglie wavelength of **electron**

\[\sim 0.1 \text{ nm} \ (100 \text{ V}) \]

\[\frac{1}{2} \sim \frac{1}{5} \]

\[\frac{1}{5} \sim \frac{1}{100} \]

Si Photonics

Photonic Crystal

Surface Plasmons

Near-Field

materials
+ metamaterial

Empowered by Innovation

NEC
Contour map of light power (in Z direction)

SiON Waveguide

Ag electrode embedded in Si

Input light (TM polarized)

1.1 μm

Si nano-photodiode

Contour map of electric field

Z' (μm)

Coupling length ~10 μm

SiON Waveguide

Si plasmon photodiode

Pad

2 μm
Bonding Optical Interconnect on LSI

Optical Interconnect Chip (front side for bonding)

Optical Interconnect Chip (front side for bonding)

Optical Signal

SiON waveguide

Si nano-photodiode

LSI chip

Bonded Structure (Cross-Section)

Si nano-photodiode

Flip-Chip Bonding with LSI Chip

Face-to-face bonding gives short vias \rightarrow >10 GHz

Large tolerance for alignment compared with optical via

- Large tolerance for alignment ($\pm 5 \, \mu m$)

Diagram showing:
- Optical Interconnect Chip
- Si Nano-Photodiode
- SiON Core
- Cu-via
- LSI Chip
- Flip-Chip Bonding
- AuSn Bump
- SiO$_2$

15 μm
5-GHz optical pulses triggered the LSI circuits

Pulses from Light Source (5GHz)

Optical Interconnect Chip

Output signal from electronic circuit

Outline

1. Optical Interconnection
2. Interconnect Era
3. Nanophotonics
4. Si Photonics for Photonic NW: or vice versa
5. Summary
Optical Switch

World’s smallest 1 x 4 Optical Switch Chip (190×75 μm²)

Input light

Output light

1×4 Optical SW Module

Courtesy of T. Chu
One-Chip Colorless MUX/DEMUX Using Si Photonic Circuit

Using Si waveguides, an AWG and switches were integrated into a chip. Low-power and quick reconfiguration of optical paths within a 2-mm device was demonstrated.

S. Nakamura, et al., ECOC2008, Tu.4.C.6
More than 50% of production cost for state-of-the-art LSIs comes from interconnect. … T. Shibata (Toshiba) 2008.

- On-chip optical WDM
 (Wavelength Division Multiplexing)
 - Data transfer rate increase (\(\sim\) one order)
 - Reduction of pin #

- On-plain crossing by optical waveguides
 - Less interconnection layers
 - Less crosstalk
Optical Ring Bus Connecting Chip & Memories

- Memory array
- SDRAM with opt. I/F
- Optical clock
- Multiple wavelength light sources
- Serial to parallel conversion
- Clock synchronization
- MUX
- DEMUX
- Bank 1, Bank 2, Bank 3, Bank 4
- Multi-bank memory I/F
- IP's via NoC
- Write
- Read
3-D Integration + Optical Interconnect

Integrated Optical Layer / LSI Chip
(Optical Clocking)

On-Chip WDM

Input WDM Signal

Output WDM Signal

3-D Integrated LSI
On-Chip Optical Network

- **Functional Block (Core)**
- **Waveguide**
- **Micro-node**
 - PD
 - Mod/ SW
 - AWG/ Filter
- **Adjacent Chip**
- **WDM Signal**
 - (Data + Clock)
WDM Circuit with Si Nano Photodiode

SiON Waveguide for On-chip WDM

Branching Structure

Si Nano Photodiode
10 GHz signal from WDM signal was extracted by the integrated demultiplexer and Si nano photodiode. Crosstalk noise; less than -10dB.
1. Optical Interconnection
2. Interconnect Era
3. Nanophotonics
4. Si Photonics for Optical NW: or vice versa

5. Summary
Summary

• We proposed an approach for on-chip optical interconnect suitable for 3-D integration.

• Flip-chip bonding of an optical interconnect chip with a LSI reduces the electrical path enough to obtain high speed response of >10 GHz.