Will photonics penetrate into inter-chip and intra-chip communications?

Harm Dorren and Oded Raz
On-chip interconnect networks

Electronic on-chip interconnect network
- Interconnect needs repeaters
- Each repeater receive, buffers and re-transmits every bit
- Higher clock frequencies: more power per repeater and more repeaters

Optical on-chip interconnect network
- No repeaters
- Power independent of distance/ no cross talk, etc

Forecast for 2020
- 10 TFLOP processors
- On-chip I/O ~ 1 byte per flop (Amdahl)
- Power electronic network 10 TFLOPs chip ~ 500 Watts
- ~ 7 pJ/bit or 7 mW/Gb/s
Photonic interconnect network:
Receiver

Transmission path

Typical receiver sensitivity at BER 10^{-9}

<table>
<thead>
<tr>
<th>Speed</th>
<th>PIN</th>
<th>APD</th>
<th>Power (TIA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 Gb/s</td>
<td>-10 dBm</td>
<td>-</td>
<td>~250 mW</td>
</tr>
<tr>
<td>10 Gb/s</td>
<td>-20 dBm</td>
<td>-25 dBm</td>
<td>~200 mW</td>
</tr>
<tr>
<td>2.5 Gb/s</td>
<td>-25 dBm</td>
<td>-30 dBm</td>
<td>~75 mW</td>
</tr>
</tbody>
</table>
Photonic interconnect network

Transmission path

- **Transmitter**
- **Transmission path**
- **Receiver**

Typical waveguide losses

<table>
<thead>
<tr>
<th>Material</th>
<th>Typical losses</th>
<th>Bending radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica</td>
<td>0.01 dB/cm</td>
<td>500 micrometer</td>
</tr>
<tr>
<td>Etchless silicon</td>
<td>0.3 dB/cm</td>
<td>50 micrometer</td>
</tr>
<tr>
<td>SOI</td>
<td>2.4 dB/cm</td>
<td>5 micrometer</td>
</tr>
<tr>
<td>InP membranes</td>
<td>3 dB/cm</td>
<td>5 micrometer</td>
</tr>
</tbody>
</table>

/Department of Electrical Engineering
Photonic Interconnect network: Option 1: *Off-chip laser and transmitter*

<table>
<thead>
<tr>
<th>Data Rate</th>
<th>Power Laser (mW)</th>
<th>Power Modulator (mW)</th>
<th>Power Modulator Driver (W)</th>
<th>Insertion Losses (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 Gb/s</td>
<td>150</td>
<td>60</td>
<td>5.85</td>
<td>8</td>
</tr>
<tr>
<td>10 Gb/s</td>
<td>150</td>
<td>< 50</td>
<td>3.6</td>
<td>8</td>
</tr>
<tr>
<td>2.5 Gb/s</td>
<td>150</td>
<td>< 50</td>
<td>1~2</td>
<td>8</td>
</tr>
</tbody>
</table>

Silicon modulators, MZI or Ring resonator, limited data available, but high losses, and high power!

See Ding and Pan, SLIP 09
Direct modulation

Use microdisk laser (diameter 7.5 micrometer)
Threshold current is ~ 0.1 mA
Power 5 mW (2V, 2.5mAmps)
Optical power in waveguide ~ 50 mW
10 Gb/s wavelength conversion is possible but
direct modulation at high speed never been demonstrated

Devices made by IMEC/Gent (FP7 project HISTORC)
Link and power budget

40 Gb/s (off-chip laser)

- Receiver sensitivity (PIN): -10 dbm
- Waveguide losses: 5 dB
- Insertion losses modulator: 8 dB
- Coupling losses: 3 dB
- Required laser power: 6 dbm (4mW)

<table>
<thead>
<tr>
<th>Component</th>
<th>Power (mW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power laser</td>
<td>150</td>
</tr>
<tr>
<td>Power modulator</td>
<td>60</td>
</tr>
<tr>
<td>Total</td>
<td>210</td>
</tr>
<tr>
<td>Power modulator driver</td>
<td>5850</td>
</tr>
<tr>
<td>Power TIA Receiver</td>
<td>250</td>
</tr>
<tr>
<td>Total</td>
<td>6100</td>
</tr>
</tbody>
</table>

210 mW (5.25 mW/Gb/s)

6100 mW (153 mW/Gb/s)
Link and power budget

10 Gb/s (off-chip laser)

Receiver sensitivity (APD): -25 dBm
Waveguide losses: 5 dB
Insertion losses modulator: 8 dB
Coupling losses: 3 dB
Required laser power: -9 dbm (0.13 mW)

Power laser: 150 mW
Power modulator: 50 mW
200 mW (20 mW/Gb/s)

Power modulator driver: 3600 mW
Power TIA Receiver: 200 mW
3800 mW (380 mW/Gb/s)
Link and power budget

2.5 Gb/s (off-chip laser)

Receiver sensitivity (APD): -30 dBm
Waveguide losses: 5 dB
Insertion losses modulator: 8 dB
Coupling losses: 3 dB
Required laser power: -14 dBm (0.04 mW)

Power laser: 150 mW
Power modulator: 50 mW
200 mW (80 mW/Gb/s)

Power modulator driver: 1000 mW
Power TIA Receiver: 75 mW
1075 mW (430 mW/Gb/s)
Link and power budget
2.5 Gb/s (direct modulation)

Receiver sensitivity (APD): - 30 dbm
Waveguide losses: 5 dB
Insertion losses modulator: 8 dB
Coupling losses 3 dB
Required laser power -14 dbm (0.04 mW)

<table>
<thead>
<tr>
<th>Component</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power laser</td>
<td>5 mW</td>
</tr>
<tr>
<td>Power modulator</td>
<td>0 mW</td>
</tr>
<tr>
<td></td>
<td>5 mW (2 mW/Gb/s)</td>
</tr>
<tr>
<td>Power modulator driver</td>
<td>0 mW</td>
</tr>
<tr>
<td>Power TIA Receiver:</td>
<td>75 mW</td>
</tr>
<tr>
<td></td>
<td>75 mW (30 mW/Gb/s)</td>
</tr>
</tbody>
</table>
Bandwidth distance product

including driver power

Off-chip laser at 2.5, 10 and 40 Gb/s

Direct modulation at 2.5 Gb/s

Electronic with repeaters (3.5 GHz)
Bandwidth distance product without *driver power*

- Off-chip laser at 2.5, 10 and 40 Gb/s
- Electronic with repeaters (3.5 GHz)
- Direct modulation at 2.5 Gb/s
Conclusions (1)

Off-chip laser
- Sufficient link budget to allow some networking, but, high power dominated by drivers

On-chip laser
- Sufficient power for a single link, but, insufficient link budget for a network on a chip
Conclusions (2)

Photonics gives an improved bandwidth distance product:

Bandwidth is limited by electronics, thus photonics only gives distance!!

Need applications with "distance"