Will photonics penetrate into inter-chip and intra-chip communications?

Harm Dorren and Oded Raz

Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

On-chip interconnect networks

Electronic on-chip interconnect network

- Interconnect needs repeaters
- Each repeater receive, buffers and re-transmits every bit
- Higher clock frequencies: more power per repeater and more repeaters

Photo by IBM

- No repeaters
- Power independent of distance/ no cross talk, etc

Forecast for 2020

- 10 TFLOP processors
- On-chip I/O ~ 1 byte per flop (Amdahl)
- Power electronic network 10 TFLOPs chip ~ 500 Watts
- ~ 7 pJ/bit or 7 mW/Gb/s

/Department of Electrical Engineering

Photonic interconnect network: Receiver

Typical receiver sensitivity at BER 10⁻⁹

	PIN	APD	Power (TIA)
40 Gb/s	-10 dBm	-	~ 250 mW
10 Gb/s	-20 dBm	- 25 dBm	~200 mW
2.5 Gb/s	-25 dBm	-30 dBm	~75 mW

Photonic interconnect network Transmission path

Receiver

Typical waveguide losses

	Typical losses	Bending radius
Silica	0.01 dB/cm	500 micrometer
Etchless silicon	0.3 dB/cm	50 micrometer
SOI	2.4 dB/cm	5 micrometer
InP membranes	3 dB/cm	5 micrometer

Photonic Interconnect network: Option 1: Off-chip laser and transmitter

Silicon modulators, MZI or Ring resonator, limited data available, but high losses, and high power!

Direct modulation

Use microdisk laser (diameter 7.5 micrometer)

Threshold current is ~ 0.1 mA Power 5 mW (2V, 2.5mAmps) Optical power in waveguide ~ 50 mW 10 Gb/s wavelength conversion is possible but

direct modulation at high speed never been demonstrated

/Department of Electrical Engineering Devices made by IMEC/Gent (FP7 project HISTORC)

Link and power budget 40 Gb/s (off-chip laser)

Receiver sensitivity (PIN):	-10 dbm
Waveguide losses:	5 dB
Insertion losses modulator:	8 dB
Coupling losses	<u>3 dB</u>
Required laser power	6 dbm (4mW)

Power laser	150 mW
Power modulator	<u>60 mW</u>
	210 mW (5.25 mW/Gb/s)

Power modulator driver	5850 mW
Power TIA Receiver:	<u>250 mW</u>
	6100 mW (153 mW/Gb/s)

Link and power budget 10 Gb/s (off-chip laser)

Receiver sensitivity (APD):	- 25 dBm
Waveguide losses:	5 dB
Insertion losses modulator:	8 dB
Coupling losses	<u>3 dB</u>
Required laser power	-9 dbm (0.13 mW

Power laser	150 mW
Power modulator	<u>50 mW</u>
	200 mW (20 mW/Gb/s)

Power modulator driver Power TIA Receiver: 3600 mW <u>200 mW</u> 3800 mW (380 mW/Gb/s)

Link and power budget 2.5 Gb/s (off-chip laser)

Receiver sensitivity (APD):	- 30 dBm
Waveguide losses:	5 dB
Insertion losses modulator:	8 dB
Coupling losses	<u>3 dB</u>
Required laser power	-14 dbm (0.04 mW)

Power laser	150 mW
Power modulator	50 mW
	200 mW (80 mW/Gb/s)

Power modulator driver Power TIA Receiver: 1000 mW <u>75 mW</u> 1075 mW (430 mW/Gb/s)

Link and power budget 2.5 Gb/s (direct modulation)

Receiver sensitivity (APD):	- 30 dbm
Waveguide losses:	5 dB
Insertion losses modulator:	8 dB
Coupling losses	<u>3 dB</u>
Required laser power	-14 dbm (0.04 mW

Power laser	5 mW
Power modulator	<u>0 mW</u>
	5 mW (2 mW/Gb/s)
Power modulator driver	0 mW
Power TIA Receiver:	75 mW
	75 mW (30 mW/Gb/s

Bandwidth distance product including driver power

Bandwidth distance product without *driver power*

Conclusions (1)

Off-chip laser

- Sufficient link budget to allow some networking, but, high power dominated by drivers

On-chip laser

- Sufficient power for a single link, but, insufficient link budget for a network on a chip

Photonics gives an improved bandwidth distance product:

Bandwidth is limited by electronics, thus photonics only gives distance!!!

Need applications with "distance"

/Department of Electrical Engineering