

Active Photonic Routing for Computer Interconnects

- the Prospects for Photonic PCBs

Ian White and Richard Penty

University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Avenue, Cambridge CB3 0FA, United Kingdom

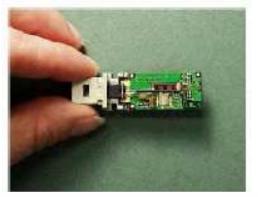
Acknowledgements:

Joe Beals, Nikos Bamiedakis, Jon Ingham, Michael Crisp, and Ying Hao, University of Cambridge Dr T Clapp and Dr J De Groot, Dow Corning Dr D Cunningham, Avago Technologies

> Centre for Advanced Photonics and Electronics EPSRC, Cambridge Integrated Knowledge Centre

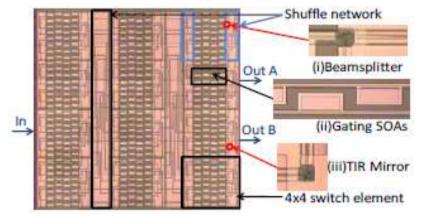
Next Gen IBM Supercomputer -

Interconnect costs: \$625M (\$25/Gb/s)

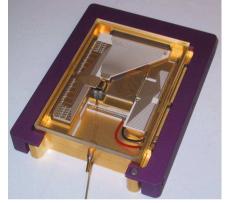

Targeted Interconnect costs: \$25M (at \$1/Gb/s)

- Image: Non-State StateSimulator
 - Computer performance is a function of internal architecture, processor speed, external architecture, data and I/O access ...
 - Cluster architectures provide value and require lots of interconnect
 - now the most common architecture for top 500 machine

http://www.top500.org/lists/2005/06/PerformanceDevelopment.php



Interconnect and Routing Options for Computer Networks Modular Integration Sub-systems



Source:

LA Buckman et al., IEEE PTL, Vol.14, pp 702-704, 2002

University of Cambridge, 2009

Infinera, OFC 2005

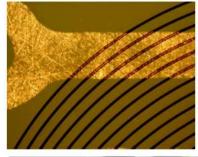
Luxtera Products

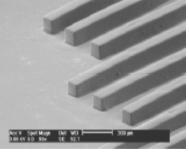
High speed aptical modulator realized in CMOS-SOL

Is there another way?

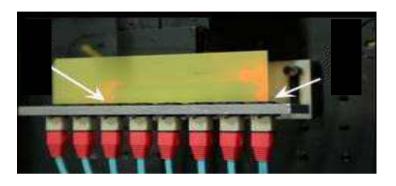
Waveguides (and components) on the PCB?

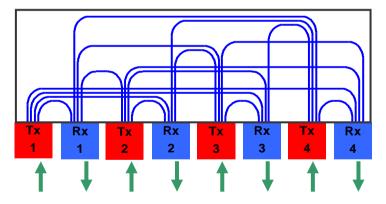
- Optical Interconnects today
 - We buy modules
- Electrical Interconnects today
 - Mostly assembled from subcomponents very cheap!
- Can we move Optics to mass manufacturing from sub-components?
 - Polymer waveguides on PCB?


Siloxane Polymer PCBs


Siloxane materials engineered exhibiting suitable mechanical, thermal and optical properties (OE4140 and OE4141):

- are flexible for use with PCBs (suitable for printing!)
- exhibit high processability
 - exhibiting high thermal and environmental stability: withstand > 350 °C
 - \rightarrow can be integrated with PCBs
- Low reported loss:
 - ~ 0.05 dB/cm @ 850 nm
 - ~0.006 dB/crossing using SMF launch
- Excellent crosstalk performance:
 - < -60 dB in intersecting waveguide
- High speed > 10 Gb/s operation

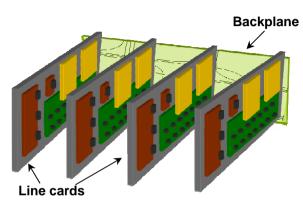



Centre for Photonic Systems

DOW CORNING

Polymer Optical Backplane Architecture

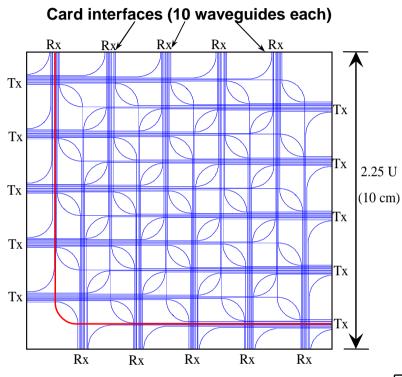
Requirements:


passive routing scalable architecture low loss and crosstalk

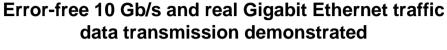
DOW CORNING

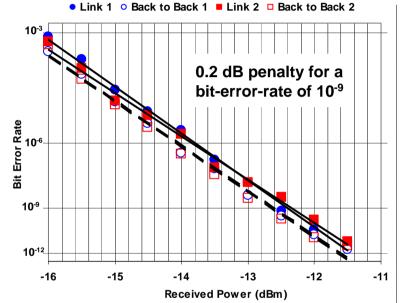
Centre for Photonic Systems

Ribbon fibres connect at board edges and run to line cards


Standard ribbon fibre link backplane to transmit and receive arrays mounted on line-cards

Schematic of conventional electrical backplane with pluggable line cards

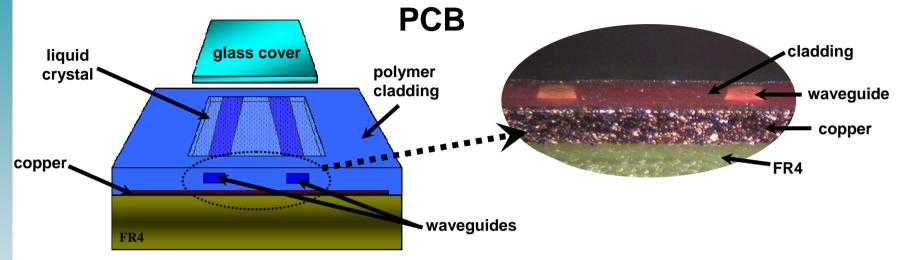

Demonstrated 10 Card Optical Backplane



Schematic of 10-card backplane layout

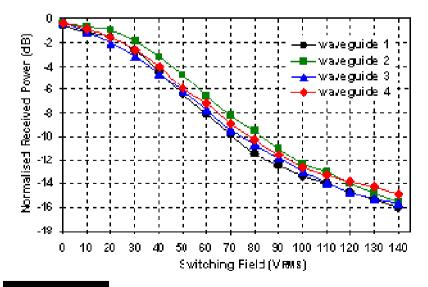
- 100 waveguides
- single 90° bend per waveguide
- 90 crossings or less per waveguide

Terabit capacity enabled by 100 waveguides each capable of 10 Gb/s operating in multicast mode



Input Type	Insertion Loss	Worst-case Crosstalk
50 μm MMF	2 to 8 dB	< -35 dB
SMF	1 to 4 dB	< -45 dB

DOW CORNING

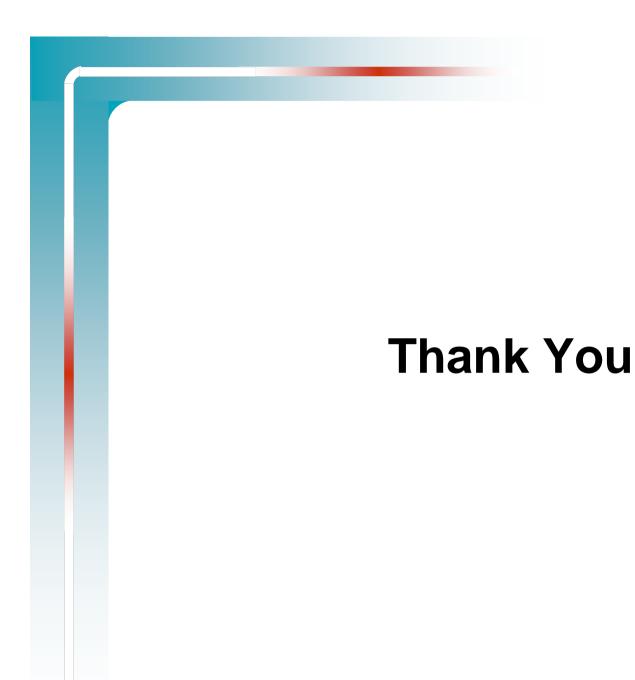


Active Routing: Integrated LC/polymer Switch on FR4

- Mixture of two nematic liquid crystals: Merck ZLI-1840 and 1550
- Bulk planar alignment of the liquid-crystal parallel to the waveguides using a rubbed polyimide layer on the underside of the ITO top contact
- 850 nm operating λ (though easily varied)
- 0.5 dB excess loss and 15 dB switching
- Excellent repeatability ~0.5 dB across 4 waveguides

Ack T Wilkinson, S Morris, O Hadeler Cambridge University

DOW CORNING



Final Comments

- Photonics in period of transition with enormous potential for new low cost high performance user-designed optical systems
- Polymer siloxane materials satisfy necessary requirements for low-cost and large-scale integration of *waveguides and active and passive components* into PCBs

Points for Discussion:

- 1. Are Printed Electro-optical PCBs a promising technology for use in high-speed short-reach optical interconnection applications where light is retained in the PCB?
- 2. Are there opportunities for integrated active polymer (laser/modulator/detector) components?

