

Zurich Research Laboratory

Electro-optical packaging trends for computing applications

Bert Jan Offrein

Innovation challenges at all levels of the computing system

Miniaturization of the logic device

Intra-system communication

• How can optics help? Optical communications! All-optical logic?

Where to attach the optics?

- Density advantage →As close as possible to the processor
- Signal quality → As close as possible to the processor
- Technology development → Build on existing technology
- Supplier ecosystem → Build on existing technology
- Technology acceptance → Build on existing technology

Optics to the carrier - Implementation

Mostly standard processes and designs were applied
 FPGA (Xilinx Virtex-4 FX60) in stead of a processor for flexibility and layout effort reasons

Optical characterization

OE-module driven by FPGA

Successful operation at 10 Gbps (Over-clocking)

Pre-emphasis tests on link through socket and long cables

Pre-test with OE-module on separate testboard

Without (top) and with pre-emphasis at 8 Gbps

OE-module driven by FPGA at 10 Gb/s (no pre-emphasis)

Issues and challenges

- Additional assembly steps related to optics
- Cost, cost, cost,
- How much optics is required at all?
 A lot! → Multiple Tb/s IO Bandwidth
 10 Gb/s per fiber → 100's to 1000's of fibers!
- Routing of many fibers is tedious and costly
- Cost, cost, cost, ...

Terabus: Board-Level Optical Links

16 Channels TRX1 → TRX2 at 10Gb/s + 16 Channels TRX1 ← TRX2 at 10Gb/s

Challenges on optical printed circuit boards

Alternative applications are required that drive development

Example: LCD display technology development chain

- Computing applications are high-end (Complex, # channels, reliability)
- How could this chain look for optical pcb technology?

Vision for 22nm CMOS (circa 2018) - 10 TFLOPs on a 3D chip

36 "Cell" chip (~300 cores)

System level study: IBM, Columbia, Cornell, UCSB

Co-Pls: Jeff Kash (IBM) Keren Bergman (Columbia) Yurii Vlasov (IBM)

Logic plane Memory plane Photonic plane ~300 cores

~30GB eDRAM

On-Chip Optical Network

>70Tbps optical on-chip

>70Tbps optical off-chip

Photonic layer is not only connecting various cores, but also routes the traffic

All future dates and specifications are estimations only. Subject to change without notice.

Conclusions

- Optical technology will play an important role in future HPC
- Where will it go? Rack to rack, board to board, chip to chip
- Two different optical technology classes will find its way Multimode optics, short to middle term
 Single mode optics (Si-photonics), longer term
- A high state of electrical / optical integration is required to make optics successful
- Evolution or revolution?

Zurich Research Laboratory

Thank you for your attention!

Bert Jan Offrein