High Speed Detectors

Andreas Umbach ECOC 2009, Workshop 7

Monolithic and Hybrid Photonic Integrated Transceivers for Advanced Modulation Formats

100 Gbit/s Long-Haul Transport

Optical networks use "standardized" optical transmission lines, i.e. 50 GHz channels of 10 Gbit/s DWDM systems and ROADMs

Back-to-back BER comparison for 100 Gbit/s modulation formats

→ PolMux DQPSK with coherent detection gives best OSNR performance

(Source: G. Raybon, P. Winzer, Alcatel-Lucent, ECOC 2007)

100G Hardware Complexity

Transponder hardware comparison (prominent 100G options)

"System intelligence" has to be built into the optoelectronics,

→ higher value creation AND higher cost of the components

Integration Imperative

- Phase and polarisation information has to be maintained in the entire receive path
- → skew control makes use of fibers problematic
- Development of long-haul transceiver modules (300pin MSA)
- → miniaturisation becomes major issue

Integration is required for <u>functionality</u>

Challenges for Integration

→ many options, but not so many solutions

Market Requirements

Sufficient Performance

- High speed
- Good sensitivity
- High functionality

High Reliability

- Long lifetime
- Robustness
- Zero failures

Low Cost

- High yield, limited complexity
- Small chip size
- Low power consumption

These are the goals of Photonic Integration

DPSK-Rx with Free-Space Optics

Hybrid Integrated DPSK Receiver

Monolithic InP DQPSK 53.5-Gb/s receiver

Passive wavegulde

Wavegulde photodetector

Monolithic integration on InP

→ small size

Photodetectors (a)

Thermooptic phase shifter Current injection phase-shifter contact

Alcatel-Lucent

C. R. Doerr et al., PDP ECOC 2007, Berlin, Germany Bell Laboratories, Alcatel-Lucent, Holmdel, NJ, USA

polarization dependent frequency shift compensated by current-controlled phase shifter

Monolithically Integrated Coherent Rx u2t photonics

more results: ECOC2009, Poster P3.20, Wednesday

Coherent Detection of a 50 Gb/s QPSK Signal Using an InP 90°Hybrid Monolithically Integrated with **Balanced Photodetectors**

R. Ludwig⁽¹⁾, A. Matiss⁽²⁾, H.-G. Bach⁽¹⁾, L. Molle⁽¹⁾, C.C. Leonhardt⁽²⁾, R. Kunkel⁽¹⁾, D. Schmidt⁽¹⁾

FhG-Heinrich-Hertz-Institut, u2t Photonics AG

chip size is 5700x1300 µm²

Fiber taper Connecting waveguides including fine tuning Φ

Electrical termination

Fraunhofer

Nachrichtentechnik Heinrich-Hertz-Institut 90° hybrid receiver comprising a 2x4 MMI with tapered input waveguides and two pairs of balanced detectors

Integrated 100 Gbit/s Coherent Rx

- 90°-hybrid with balanced photodiodes on InP
- Dual-polarization linear coherent receiver

Compact Coherent Receiver (CCRx) MSA Picometrix, u²t Photonics

Integration Options

- Free-space optics and direct coupling to optical devices
- Planar optics (SiO₂, SOI, Polymers), hybrid integration
- Integration on GaAs
- Monolithic integration on InP

figures of merit:

chip size, chips/wafer wafer size, cost/wafer yield (process maturity)

→ figures will change with time

AND with investment!
(When will we have 6-inch InP wafers?)
Who pays for the component level innovation?

The Future Might Look Easy

One material system might suite all

- Everything on Si
- Everything on InP
- Everything on whatever...
- → standardisation
- → large volumes
- → low cost
- → very few suppliers

BUT: I don't believe it!!

My Crystal Ball

- Transmission capacity increase by complex multilevel modulation formats at 40..56 Gbaud at most (DP-QPSK, X-QAM, OFDM, ...)
- Components will have to modulate and detect all optical signal properties of the photons: intensity, phase, polarisation, wavelength
- One transmitter and receiver architecture each could fit all applications, but: performance will still depend on application (cost, reach, density, ...)
- Different requirements of different markets will lead to a variety of solutions and technologies

Thank you for your kind attention!

Questions?

