Integrated InP Arbitrary Waveform Generation and Detection for THz, Advanced Format Trx and Rcv S. J. Ben Yoo

UC Davis yoo@ece.ucdavis.edu

Acknowledgements:

E. Ippen, F. Kaertner, L. Koldzijeski (MIT)

J. P. Heritage, K. Okamoto, A-V Pham, R. Scott, F.Soares, J-H Baek, X.Zhou, N. Fontaine, D. Geisler, S. Cheung, A. Kalarar, R. Yu (UCDavis)

W.Tsang, K-Y Liou, G. Chu, R.Hamm, H.Huo, et al (Multiplex)

S. Lourdudoss, C.Junesand, F. Olsson, et al (KTH)

K. Nary, R.Coccioli, R.Johnson, N. Yeung, et al (Inphi)

This work was supported in part by DARPA DSO and SPAWAR under OAWG contract HR0011-05-C-0155

Serial vs. Parallel 100 G technology

100G serial transport

100G parallel transport (OTN VCAT)

100GE MAC %0 01 × 01 PCS 01 × 01 10 x 10-Gb/s Modulators (electrical -> optical)

•Use *single* wavelength (can be *multi-level*)

- Needs 100 G (or 2x50G)
 electronics
- Better spectral efficiency but more sensitive to dispersion and PMD

- Use *multiple* wavelengths & modulators
- Needs 10 G electronics with possible synchronization
- Manageable dispersion and PMD but poorer spectral efficiency

Scalable Optical Arbitrary Waveform Generation

Optical Arbitrary Waveform Generation

Parallel GHz Rate Intensity and Phase Modulation

Bandwidth-Scalable

THz Rate Optical Arbitrary Waveform

Time

Department of Electrical & Computer Engineering

Spectral Spectral Demultiplexer Multiplexer • Fourier Synthesis of Arbitrary Waveforms scaling to Terahertz BW

- Optical arbitrary waveform generation with high-speed modulation
- Tradeoff between wide-optical-bandwidth and electrical-bandwidth
- High-resolution AWGs can offer high-capacity signal processing systems based on low bandwidth electronics (< 10GHz)

4 DEFENSE SCIENCES OFFICE

Monolithic InP construction in support of high-speed modulation

Optical Arbitrary Waveform Generation Time/Frequency

Packaged InP OAWG (10 Ch AM+ 10 Ch PM) x 10 GHz AM-PM modulation board

10 Channel AM-PM modulation board

40ch-100GHz Si-AWG die

Measured transmission spectrum

10 GHz X 64 Channel Silica Folded OAWG

AM/PM Optical Comb Generation

175 – line Transform-Limited Optical Frequency Comb

Target Pulse (0-pi Pulse A)

OAWG Shaped Pulse --unchirped

Transform Limited Pulse with Super Gaussian Spectral Amplitude

10 chx10 Gb/s OAWG experiment

Department of Electrical & Computer Engineering

Generated Waveforms from InP OAWG encoder

Fig.e 10V

Fig.c 5V

Fig.d 7.5V

Time 20 ps/div

UCDAVIS

Fabricated 100ch x 10 GHz OAWG encoder device

Mask Layout

Photograph of Fabricated Device

(after metalization)

Measured AWG Transmission After Phase-Error Correction (100 channel measurement)

1310 nm Interconnection Lasers

OAWG based 100 G~1Tb/s Transmission with ~10 G electronics Phase (1 rad/div) PM AM <u>کا او الم</u> PM DEMUX AM MUX **Optical Comb** 200 300 100 Time (ps) Generator Dual Pol. QPSK Relative power spect density (dB) 00 00 00 00 PM AM BPSK -0.5 -1.5 -1 0 0.5 Normalized frequency offset (Hz/bit rate) X-Pol In-Phase Y-Pol

At a glance, this is useful for parallel 40G/100G Trx/Rcv with independent NAPPA CPSK, QPSK, DQPSK, etc. DEFENSE SCIENCE Department of Electrical & Computer Engineering

In-Phas

360 Gb/s PRBS Data OOK & DPSK (experiment)

400 Gb/s NRZ-OOK PRBS generation 1 bit/s-Hz

400 Gb/s NRZ-OOK PRBS generation (40-bit-length) (a) Spectral domain (blue) intensity and (red) phase targets indicated by 'x'. (b) Time-domain optical field (blue) intensity and (red) phase. Target packet indicated by lighter shades. (c) Target and (d) measured eye diagrams.

1.2 Tb/s NRZ-16QAM PRBS with 3 bit/s-Hz

120 bit 1200 Gb/s NRZ-QAM packet (a) spectral intensity (blue) and phase (red), and
(b) optical field (blue) intensity, (red) phase. Target indicated by lighter shades and
'x'. (c) Target and (d) measured constellation diagrams.

Optical Arbitrary Waveform Measurements

- Spectral slices of the signal (S) are coherently detected using a 90° optical hybrid circuit (OHC) and a single mode from the LO OFC
- Fast photodiodes (bandwidth>spectral slice width) measure the four OHC outputs
- Post processing reconstructs signal from measured outputs

Schematic Configuration of the Single-Shot Optical Arbitrary Waveform Measurement

N. K. Fontaine, R. P. Scott, C. Yang, J. P. Heritage, and S. J. B. Yoo, "Near Quantum-Limited Single-Shot Full-Field Measurements of Arbitrarily Shaped Optical Waveforms," accepted for publication in *Conference on Lasers and Electro-Optics (CLEO 2009),* Paper CThDD7,

2009.

Statistics for 200 shots (acquired at 20 Hz)

500 Gb/s 50-bit duobinary PRBS measurements using a bandwidth of 490 GHz

36

Photonic Integrated Transceivers for Advanced Modulation Formats

THz scale Trx and Rcv

- Serial modulation schemes will be limited in capacity
- WDM combination will limit spectral efficiency
- OAWG/OAWM schemes will allow THz and beyond scaleability with full support of any modulation format of any shape & any multiplexing schemes (e.g. CO-OFDM, CO-WDM, etc)

• OAWG/OAWM

- Energy-efficient low frequency electronics (e.g. 10 GHz)
- Coherent optical synthesis to scale up to THz and beyond
- Supports any format/protocol incl. OFDM, CO-OFDM, CO-WDM,
- Resiliency against failures of modulators or drivers.
- Monolithic and Hybrid integration possible
- Benefits from quantum limited detection in amplitude/phase

Statistics for 200 shots (acquired at 20 Hz)

Optical Arbitrary Waveform Generation

LIDAR applications

~Terabit/sec communication

- Correctly retrieves 180 Gb/s bit-sequence with >20 dB variation in spectrum
- Signal spectrum has a strong peak (20,000 photons/10 GHz, f = 0 GHz) which is greater than $R(\omega)$ (9,000 photons/10 GHz), yet weaker than $R(\omega)$ across the rest of the bandwidth (1,000 photons/10 GHz)

Chirped Pulse Measurement

DEFENSE SCIENCES OFFICE

Propagation over 25 km SMF

Various Measurements

Optical Arbitrary Waveform Generation (OAWG) Encoder

- Fourier Synthesis of Arbitrary Waveforms scaling to Terahertz BW
- Optical arbitrary waveform generation with high-speed modulation
- Tradeoff between wide-optical-bandwidth and electrical-bandwidth
- High-resolution AWGs can offer high-capacity signal processing systems based on low bandwidth electronics (< 10GHz)
- Monolithic InP construction in support of high-speed modulation

Fabricated 5 GHz AWG with segmented tapering

Ultrahigh Density AWG (5 GHz)

200-Fiber Fan-In Silica PLC

Alligned PM fiber Array on Silicon V-Groove

BS

camera

PD

DEFENSE SCIENCES OFFICE

49

Channel #	Measured power at PD [dBm]
18	8.2
30	8.1
50	8.4
65	8.0
80	8.0
96	8.1
106	8.0
127	8.2
140	7.9
169	8.2
199	8.5

Average Loss of Fan-In Array= 1.4 dB =12.5dBm (Pin)-8.1dBm (average output)-3dB(from beam splitter) Department of Electrical & Computer Engineering

Symmetry in Optical Arbitrary Waveform Generation and Measurement

Target Pulse #3 (0-pi Pulse B)

Measured Pulse #3 (0-pi Pulse B)

FROG ERROR measurement for Pulse #3 (0-pi Pulse B)

Target

Measured

OAWM PLC and Fan-In PLC

